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Abstract. Generalizing some work of P. Bailey and M. Fried, we show that, given a number field k
and a profinite group G which is an extension of a finite group by a projective pronilpotent group of
finite rank, there is no projective system of k-rational points on any tower of Hurwitz spaces associated
with G. In particular, there is no regular realization of such a group G over k.

2000 Mathematic Subject Classification. Primary 12F12, 14G32, 20E18; Secondary 20E06, 14D22.

Introduction

The problem motivating this paper is the regular inverse Galois problem RIGP for profinite
groups over number fields and its translation in terms of projective systems of rational points
on towers of Hurwitz spaces. Though strongly related to the RIGP for finite groups, additional
obstructions - such as the lack of roots of 1 - are attached to the RIGP for profinite groups.
For instance, the branch cycle argument (lemma 1.1) rules out the regular realization of such
elementary profinite groups as Zp or D2p∞ over any number field [F95b]. On the contrary,
groups as GLn(Zp) have been recently regularly realized over Q by Katz’s algorithm for the
rigidity method [?]. So, there is no hope to obtain a global answer to the RIGP for profinite
groups over number fields.

In this paper, we generalize some results of [BF02] which states that, given a number field k
and a centerless p-perfect finite group G, there is no regular realization of its universal p-Frattini
cover pG̃ over k with only inertia groups of finite prime-to-p order. More precisely, we replace

the universal p-Frattini cover pG̃ of G by any profinite group G which is an extension of a finite
group G0 by a pronilpotent projective group P of finite rank and we impose no restriction on
the ramification. We thus obtain

Theorem (Theorem 2.1): Let 1 → P → G
s→ G0 → 1 be a short exact sequence of profinite

groups with G0 a finite group and P a pronilpotent projective group of finite rank. Then there
is no regular realization of G over k(T ) for any number field k.

In terms of towers of Hurwitz spaces, this means that, for any number field k, there is no
projective system of k-points lying in the non-obstruction locus (that is, corresponding to G-
covers defined over k) of any tower of Hurwitz spaces associated with such a profinite group G.
It is rather natural to ask whether there exist projective systems of k-rational points outside
the non-obstruction locus on such tower of Hurwitz spaces. We show the answer is no

Theorem (Theorem 4.1): Let 1 → P → G
s→ G0 → 1 be a short exact sequence of profinite

groups with G0 a finite group and P a projective pronilpotent group of finite rank. Then there is
no regular Galois extension K/k(T ) with group G and field of moduli a number field k. In other
words, lim←−

n≥0

Hr,Gn(k) = ∅ for any tower of Hurwitz spaces (Hrn+1,Gn+1 → Hrn,Gn)n≥0 associated

with G and any number field k.
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The proof of theorem 2.1 involves arguments which generalize those of [F95b] (lemma 2.2, 1st
variant) and [BF02] (lemma 2.2, 2nd variant) as well as a technical adaptation of the branch
cycle argument (lemma 2.3). Theorem 4.1 is a corollary of both theorem 2.1 and the following
result

Theorem (Theorem 3.1): Let 1 → P → G
s→ G0 → 1 be a short exact sequence of profinite

groups with G0 a finite group and P a projective pronilpotent group of finite rank. Let k be a
field of characteristic 0. Then any regular Galois extension K/k(T ) with group G and field of
moduli k is defined over a finite extension k0/k.

For finite G-covers, there is a classical obstruction to the field of moduli being a field of def-
inition. The proof of theorem 3.1 uses a generalization of this obstruction. This essentially
reduces the problem to a group theoretic verification.

The paper is organized as follows: section 1 recalls the basic notions and introduces the
notations, section 2 is devoted to the proof of theorem 2.1, section 3 to the one of theorem 3.1.
Finally, section 4 gives some applications and shows the strong torsion conjecture for abelian
varieties implies one of Fried’s conjectures for modular towers.

Aknowledgment: This work originates in Fried’s papers [F95b], [FK97], [BF02] where some
of the key ideas we generalize here already appear.

1. Notations and basic notions

Given a field k, we will always denote by Γk its absolute Galois group. For any r ≥ 3, set
U r = spec(Z[T1, ..., Tr]∏1≤i<j≤r(Ti−Tj)) and let Ur = U r/Sr be the quotient of U r by the natural
action of the symmetric group Sr.

1.1. Arithmetic fundamental group and G-covers. Let k be a field of characteristic 0
and k(T ) an algebraic closure of k(T ). We fix a compatible system (ζn)n≥2 of primitive roots
of 1 in k that is, ζm

mn = ζn, n, m ≥ 2 (when k = C, the canonical choice is ζn = e2iπ/n, n ≥ 0).
Given a non singular projective algebraic curve X/k and a divisor t on it, let Mk,X,t/k(T ) be

the maximal algebraic extension of k(X) (in a fixed algebraic closure k(X)) unramified outside

t then Mk,X,t/k(T ) and Mk,X,t/k(T ) are Galois extension with groups we denote by πalg
1,k (X \ t)

and πar
1,k(X \ t) respectively.

If X = P1
k and t ∈ Ur(k), we write Mk,t, πalg

k,t , πar
k,t instead of Mk,,tX , πalg

1,k (X \ t), πar
1,k(X \ t).

In particular, we have the fundamental short exact sequence from Galois theory

1 �� πalg
k,t

�� πar
k,t

�� Γk
��

s

��

1 .

which splits since P1(k) �= ∅. By Riemann Existence Theorem, πalg
k,t is the profinite completion

of the group defined by the generators γ1, ..., γr with the single relation γ1 · · · γr = 1 (γ1, ..., γr

rise from a standard topological bouquet of loops around the branch points for P1
k \ t and, in

the following, we will always assume such a topological bouquet has been fixed); the action of

Γk on πalg
k,t has the property

Lemma 1.1. (Branch cycle argument) For any σ ∈ Γk,
s(σ)γi is conjugated in πalg

k,t to γ
χ(σ)
π(σ(i))

where χ : Γk → Ẑ denotes the cyclotomic character and π(σ) ∈ Sr the permutation induced by
σ on {t1, ..., tr}.
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A G-cover is a pair (f, α) where f : X → P1 is an algebraic Galois cover and α : Aut(f) → G
is a group isomorphism. G-extensions (K/k(T ), α) are defined similarly. One can attach to any
G-cover defined over an algebraic closed field k of characteristic 0 three invariants: the Galois
group G, the branch point divisor t = {t1, ..., tr} ∈ Ur(k) and, for each t ∈ t, the corresponding
inertia canonical conjugacy class Ct

1.
Let G be a finite group, t = {t1, ..., tr} ∈ Ur(k) and C = (Ct)t∈t an r-tuple of non trivial

conjugacy classes of G, the following categories are classically equivalent:
- (C1) the category of k-G-covers (f : X → P1

k
, α) with invariants G, t, C.

- (C2) the category of k(T )-G-extensions (K/k(T ), α) with invariants G, t, C.

- (C3) the category of group epimorphisms Φ : πalg
k,t � G such that (CG

Φ(γ1), ..., C
G
Φ(γr)) = C,

where CG
g is the conjugacy class of g in G.

In the category (C1) (and thus (C2) since the equivalence from (C1) to (C2) is just the
function field functor), a morphism from (f1 : X1 → P1

k
, α1) to (f2 : X2 → P1

k
, α2) is the data

of a morphism of covers u : f1 → f2 such that for any g ∈ Aut(f1) α2(u ◦ g ◦ u−1) = α1; in
the category (C3), a morphism from Φ1 to Φ2 is an inner automorphism ig ∈ Inn(G) such that
ig ◦ Φ1 = Φ2.

The usual notions of field of moduli and field of definition can be easily described in the

category (C3). Indeed, let (f : X → P1
k
, α) be a k-G-cover corresponding to Φ(f,α) : πalg

k,t � G
then
- (fod) k is a field of definition for (f, α) if the two following equivalent conditions are fulfilled:
(i) There exists a k-G-cover (fk, αk) such that (f, α) � (fk, αk) ×k k.

(ii) Φ(f,α) : πalg
k,t � G extends to a group epimorphism Φ(f,α),k : πar

k,t � G.

- (fom) k is the field of moduli for (f, α) (relatively to the extension k/k) if the two following
equivalent conditions are fulfilled:

(i) k = k
M(f,α),k where M(f,α),k = {σ ∈ Γk | (f, α) � (f, α)σ} <f Γk is the closed subgroup (of

finite index) of Γk fixing the isomorphism class of (f, α).
(ii) There exists an application hs

(f,α),k : Γk → G such that Φ(f,α)(
s(σ)γ) = hs

(f,α),k(σ) ·Φ(f,α)(γ) ·
(hs

(f,α),k(σ))−1, γ ∈ πar
k,t, σ ∈ Γk. (Observe that the notion of field of moduli does not depend

on the section s : Γk ↪→ πar
k,t).

Clearly (fod) implies (fom) but the converse is false in general. One can define a cohomological
obstruction [ω(f,α),k] ∈ H2(k, Z(G)) for a G-cover (f, α) with group G and field of moduli k to
be defined over k [DDo97]. With the notations above, the map

φ
s

(f,α),k: Γk → G/Z(G)
σ → hs

(f,α),k(σ)[mod Z(G)]

is a well-defined group morphism, which only depends on s and not on the particular represen-
tative hs

(f,α),k. Considering Z(G) as a trivial Γk-module, the cochain

ωs
(f,α),k: Γk × Γk → Z(G)

(σ, τ) → hs
(f,α),k(στ)−1hs

(f,α),k(σ)hs
(f,α),k(τ)

1this latest invariant can be defined as follows: the inertia groups of f above t ∈ t are conjugated cyclic groups
of order the ramification index et. Let Pt be a place of k(X) dividing t and ut a uniformizing parameter. The
distinguished generator of the inertia group I(Pt|t) is the preimage of ζet by the well-defined group isomorphism
(which does not depend on the choice of the uniformizing parameter ut of Pt) I(Pt|t) → Uet(k) mapping ω to
ω(ut)/ut[mod Pt] (where Uet(k) is the group of all the etth roots of 1 in the residue field κ(Pt) � k); replacing
Pt by σ(Pt), σ ∈ Gal(k(X)|k(T )) does not change the conjugacy class Ct of these distinguished generators.
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defines a class [ω(f,α),k] ∈ H2(k, Z(G)) which does not depend on s. Classically, [ω(f,α),k] ∈
H2(k, Z(G)) is 0 in H2(k, Z(G)) iff (f, α) is defined over k which, in turn, is equivalent to the
existence of a group morphism φs

k,(f,α) : Γk → G making the following diagram commute

1 �� Z(G) �� G �� G/Z(G) �� 1

Γk

φ
s
(f,α),k

��

∃φs
k,(f,α)

��

(this occurs in particular if Z(G) = {1} or if Z(G) is a direct factor of G). We call [ω(f,α),k] ∈
H2(k, Z(G)) the cohomological obstruction for (f, α) to be defined over k.

1.2. Hurwitz spaces and modular towers.

1.2.1. Notations for Hurwitz spaces. Given a finite group G and an integer r ≥ 3, denote by
ψr,G : Hr,G → Ur the coarse moduli space (fine assuming Z(G) = {1}) for the category of G-
covers of P1 with group G and r branch points, where ψr,G is the application which to a given
isomorphism class of G-covers associates its branch point set. For any r-tuple C = (C1, ..., Cr)
of non trivial conjugacy classes of G let Hr,G(C) be the corresponding Hurwitz space [FV91],
that is the union of all irreducible components of Hr,G parametrizing the isomorphism classes
of G-covers with r branch points, group G and inertia canonical invariant C. We will freely use
the general theory of Hurwitz spaces (cf. for instance [FV91], [V99], [W98] etc). In particular,
given a field k of characteristic 0, Hr,G(k) corresponds to G-covers with field of moduli k and
we write Hr,G(k)noob for the k-non obstruction locus that is, the (possibly empty) subset of
Hr,G(k) corresponding to G-covers defined over k (equivalently, Hr,G(k)noob is the vanishing set
of Hr,G(k) → H2(k, Z(G)), (f, α) → [ω(f,α),k]).

1.2.2. Modular towers. In the following, given a short exact sequence of profinite groups 1 →
P → G → G0 → 1 with G0 a finite group and P a finitely generated pro-p-group, we will
write P0 = P , P1 = P p

0 [P0, P0], ..., Pn+1 = P p
n [Pn, Pn] etc. for the Frattini series of P , which

constitutes a fundamental system of open neighborhoods of 1 in P by [RZ00], proposition
2.8.13. We will also write Gn for the characteristic quotient G/Pn and sn : G � Gn for the
canonical projection, n ≥ 0.

Now, fix a finite group G and a prime number p dividing |G|. Let pφ̃ :p G̃ � G be the

universal p-Frattini cover of G. Then P := ker(pφ̃) is a free pro-p group of finite rank. In this

special case, we will write n
pG̃ instead of Gn, n ≥ 0. We thus obtain a complete projective

system of finite groups (sn+1,n :n+1
p G̃ →n

p G̃)n≥0 with the property that for any p’-conjugacy

class (that is, the element od which are of prime to p order) Cn of n
pG̃ there exists a unique

conjugacy class Cn+1 of n+1
p G̃ above Cn the element of which have the same order as those of Cn

(this is Schur-Zassenhauss lemma, [D04], lemma 1.1). Assume furthermore that G is p-perfect,
that is generated by p′-elements, then any r-tuple C = (C1, ..., Cr) of non trivial p’-conjugacy
classes of G such that the set of all g1, ..., gr ∈ G verifying (i) G =< g1, ..., gr >, (ii) g1 · · · gr = 1
and (iii) gσ(i) ∈ Ci for some permutation σ ∈ Sr is non empty defines a unique projective system
of tuples (Cn)n≥0 and the corresponding system of Hurwitz spaces

(sn+1,n : Hr,n+1
p G̃(Cn+1) → Hr,np G̃(Cn))n≥0

is called the modular tower associated with the data (G,C, p). These objects were introduced
and studied by M. Fried ([F95a], [FK97], [BF02], [D04] etc.) and were the starting point of this
work.

From now on, we will simply denote a G-cover (f, α) by f .
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2. Projective systems of rational points in the non obstruction locus

In this section, we give a somewhat more general version of the following result

Theorem.([BF02], theorem 6.1) Let G be a centerless p-perfect finite group, C a r-tuple of p’-
conjugacy classes of G and k a number field. Then there is no projective system of k-rational
points on any Modular Tower associated with the data (p,C ,G).

More precisely, we consider the problem of realizing regularly over a number field k a profinite
group G presented as an extension of a finite group G0 by a free pro-p group of finite rank P
and we show this is not possible.

Theorem 2.1. Let 1 → P → G
s→ G0 → 1 be a short exact sequence of profinite groups with

G0 a finite group and P a pronilpotent projective group of finite rank and k be either a number
field or a finite field of characteristic q not dividing |G0| and distinct from one prime p dividing
|P |. Then there is no regular realization of G over k(T ) for any number field k.

2.1. Proof. For simplicity, we only give here the proof for the case k = Q, leaving to the reader
the details of the generalization to the number field case. As for the finite field case, we make
some comments in 2.2.

Since P is a pronilpotent group, it can be written as the direct product of its Sylow subgroups:
P � ∏

p| |P | Pp and, P being projective, each group Pp is a free pro-p group [RZ00] proposition

7.6.7 and corollary 7.7.6, p| |P |. As a result, considering the characteristic subgroup P ′
p =∏

p′| |P |,p′ �=p Pp′ of P , one gets the quotient short exact sequence of profinite groups:

1 �� P ��

����

G ��

����

G0
��

����

1

1 �� Pp
�� G/P ′

p
�� G0

�� 1

So, it is enough to consider the case when P is a free pro-p group. The proof of theorem 2.1
then results from the two lemmas below.

Lemma 2.2. There is no regular realization of G over k(T ) with only inertia groups of finite
order.

Proof. Let K/Q(T ) be a regular Galois extension with group G and only inertia groups of finite
order. Since P is torsion free the extension K/KP is unramified and the places which ramify in
K/Q(T ) are those which ramify in KP /Q(T ), in particular there are only a finite number - say
r - of such places. Let t ∈ Ur(k) be the ramification divisor of K/Q(T ) and C = (C1, ..., Cr)
the corresponding canonical inertia invariant. We give now two variants of the proof; the first
one generalizes a reduction argument of [F95b] for the prodihedral groups and the second one
relies on the central argument of the proof of [F95a].

First variant: Consider the characteristic subgroup [P, P ] < P then, [P, P ] being normal
in G, the regular extension K [P,P ]/Q(T ) is Galois extension with invariants G := G/[P, P ],
C := (C1, ..., Cr) (where Ci denotes the image of Ci in G � G/[P, P ]), t. Since P is a free
pro-p group of finite rank ρ, P ab := P/[P, P ] is a free abelian group of rank ρ that is, [RZ00],
theorem 4.3.4, P ab � Zρ

p and, as a result, (P ab)n = pnP ab, n ≥ 0. The tower of regular G-

extensions Q(T ) < K(P ab)0 < K(P ab)1 < ... < K(P ab)ab
n < K(P ab)n+1 < ... corresponds to a tower

of Q-G-covers ... → Xn+1 → Xn → ... → X0 → P1
Q. Let k/Q be a finite extension such that

X0(k) �= ∅ then, Xn ×Q k → X0 ×Q k being an unramified G-cover defined over k with group
P ab/(P ab)n � (Z/pnZ)ρ, it comes from an unramified G-cover An → Jac(X0 ×Q k) defined over
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k with group (Z/pnZ)ρ. Thus, since End(An) is torsion free, An carries a k-torsion point of
order pn. Let Q be a place of k not dividing p where Jac(X0 ×Q k) has good reduction then,

An and Jac(X0 ×Q k) being isogenous, their reductions modulo Q AQ
n and Jac(X0 ×Q k)Q have

the same number of Fqm-points (where [k : Q] = m). Consequently, the reduction modulo Q

map being injective on the pn-torsion subgroup of An, pn| |Jac(X0 ×Q k)Q(Fqm)| for all n ≥ 1:
a contradiction.

Second variant: Let f0 : X0 → P1
Q be the normalisation of P1

Q in KP , then the function

field functor defines a bijective correspondence between the (Q-isomorphism classes of) Galois
extension K/Q(T ) with invariants G, C, t such that KP = KP .Q and the (Q-isomorphism
classes of) projective systems (fn : Xn → P1

Q
)n≥0 of G-covers fn with invariants n

pG̃, Cn, t,

n ≥ 0, lying above f0. We use the notation P(f0, t,C)/IsomQ for these two identified sets. Let

(fn : Xn → P1
Q
)n≥0 ∈ P(f0, t,C)/IsomQ, since Xn → X0 is etale with group the p-group P/Pn,

n ≥ 0, it defines up to inner conjugation a group epimorphism j : πalg
1 (X0)

(p) � lim←
n≥0

P/Pn =: P

(where πalg
1 (X0)

(p) denotes the pro-p completion of πalg
1 (X0)). Each group epimorphism j :

πalg
1 (X0)

(p) � P in turn defines a unique group epimorphism j : Tp(X0) � P ab which makes
the following diagramm commute

πalg
1 (X0)

(p)
j �� ��

����

P

����
Tp(X0)

∃!j �� �� P ab

where Tp(X0) := πalg
1 (X0)

(p)/[πalg
1 (X0)

(p), πalg
1 (X0)

(p)] is the (p-part of) the Tate module of X0.
As a result, we get the well defined ΓQ-equivariant maps (here, Inn(P ) denotes the group of
inner automorphisms of P )

P(f0, t,C)/IsomQ ↪→ Epi(πalg
1 (X0)

(p), P )/Inn(P ) → Epi(Tp(X0), P
ab)

(fn : Xn → P1
Q
)n≥0 → j → j

where the action of ΓQ on Epi(πalg
1 (X0)

(p), P )/Inn(P ) is defined by the canonical (non neces-
sarily split) short exact sequence

1 → πalg
1 (X0)

(p) → πalg
1 (X0)

(p) → ΓQ → 1

and on Epi(Tp(X0), P
ab) by the usual action of ΓQ on Tp(X0). Furthermore, recall that, on

the one hand Tp(X0) is a free Zp-module of rank 2g(X0) (with g(X0) the genus of X0) and,
on the other hand, P ab is a free Zp-module of rank ρ so j is automatically a Zp-module epi-
morphism. Now, consider the projective system of G-covers corresponding to K/Q(T ), this

defines j ∈ Epi(πalg
1 (X0)

(p), P ) such that σ.j ≡ j[mod Inn(P )], σ ∈ ΓQ. in other words, any
σ ∈ ΓQ acts trivially on the ρ-dimensional Qp-vector space Tp(X0) ⊗Zp Qp/ker(j ⊗Zp Qp) and,
in particular, 1 is an eigenvalue of σ. Now, let X → spec(Z) be the minimal model of KP /Q

and q �= p ∈ Z where X → spec(Z) has good reduction. Then for any place Q of Q/Q dividing
q, any element σ of the decomposition group DQ of Q/q reducing to the Frobenius of Fq in
DQ � ΓFq has all its spectral values of module

√
q when acting on Tp(X0) ⊗Zp Qp (cf. [L96],

chapter XI, §6): a contradiction. �

Lemma 2.3. There is no regular realization of G over k(T ) with an inertia group of infinite
order.
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Proof. Assume there exists a regular Galois extension K/Q(T ) with group G and an inertia
group < g > of infinite order. Denote by α the order of the element s(g) ∈ G0 (so, in particular,
gα ∈ P ) and by n0 ≥ 0 the smallest integer such that gα ∈ Pn0 \Pn0+1. Since [Pn0 , Pn0 ] < Pn0+1,
gα is non zero modulo [Pn0 , Pn0 ]. Consider the quotient short exact sequence of profinite groups:

1 �� Pn0
��

����

G
sn0 ��

����

G/Pn0
��

����

1

1 �� P ab
n0

�� G/[Pn0 , Pn0 ]
sn0 �� G/Pn0

�� 1

By [RZ00], corollary 3.6.4, Pn0 is a free pro-p group of finite rank - say r. Thus P ab
n0

is a
free abelian pro-p group of rank r that is, [RZ00], theorem 4.3.4, P ab

n0
� Zr

p. Given any
set-theoretic section σn0 : G/Pn0 → G/[Pn0 , Pn0 ] of sn0 , any element u ∈ G/[Pn0 , Pn0 ] can
be written in a unique way u = σn0(sn0(u))zu with zu ∈ P ab

n0
, which implies that uzu−1 =

σn0(sn0(u))zσn0(sn0(u))−1 for any z ∈ P ab
n0

. As a result, the conjugacy class of any z ∈ P ab
n0

in G/[Pn0 , Pn0 ] contains at most |G/Pn0 | elements. Observe that this remains true when
replacing P ab

n0
and G/[Pn0 , Pn0 ] by P ab

n0
/U , (G/[Pn0 , Pn0 ])/U for any characteristic subgroup

U < P ab
n0

. Now, write L = K [Pn0 ,Pn0 ]. Since gα ∈ Pn0 is non zero modulo [Pn0 , Pn0 ], its image
in G � G/[Pn0 , Pn0 ] is of infinite order and so is the image of g. But the image of g modulo

[Pn0 , Pn0 ] generates an inertia group of L/Q(T ) and, LP ab
n0/Q(T ) being finite, the Galois exten-

sion L/LP ab
n0 is necessarily ramified. The following diagram of regular Galois extensions sums

up the situation,

Q(T ) � � ��

G/Pn0

G/[Pn0 ,Pn0 ]

LP ab
n0

� � ��

P ab
n0

L
� � ��

[Pn0 ,Pn0 ]

K

Recall P ab
n0

= lim←
n≥0

(Zp/p
nZp)

r and set Ln = L(pnZp)r
, n ≥ 0. Then at least one of the inertia

group of Ln/L0 is of order pn. Let < gn > be one of those inertia groups of order pn; by
lemma 1.1, the groups < gm

n > with m prime to p|G/Pn0 | are also inertia groups of Ln/L0.
Write ψ(n) for the number of integers 1 ≤ m ≤ pn − 1 such that (m, p|G/Pn0|) = 1, then at
least ψ(n)/|G/Pn0| groups < gm

n > with m prime to p, |G/Pn0| are non conjugate (we apply
the observation above to the characteristic subgroup U = (pnZp)

r < P ab
n0

) so there are at least
ψ(n)/|G/Pn0 | places of L0 which ramify in Ln/L0. Furthermore, each of these places also
ramifies in L1/L0 (indeed, any element gn of order pn in (Z/pnZ)r has a non zero image in
(Z/pZ)r). But limn→+∞ ψ(n)/|G/Pn0| = +∞: a contradiction. �
Remark 2.4. We can reformulate theorem 2.1 in terms of Galois groups. Let k be a number field and K/k(T )
a regular Galois extension then, for any open normal subgroup U �o Gal(K|k(T )), none of the characteristic
quotient of U is a free pro-p group.

2.2. Comments about the finite field case. Both variants of lemma 2.2 rely on a reduction
modulo q argument and, actually, they also work for any finite field of characteristic not dividing
p|G0|; their adaptation is straightforward and we refer for instance to [D04] for the second
variant. Likewise, in lemma 2.3, the obstruction to the regular realization of G over k(T )
rises from the lack of roots of 1 in k and, as a result, lemma 2.3 also works for any field k of
characteristic 0 such that [k∩Qab : Q] is finite or any finite field of characteristic q not dividing
p|G0|. This yields the finite field assertion of theorem 2.1. One could ask what occurs for the
missing characteristics. The following theorem shows - at least for the characteristics p dividing
|P | - this situation is quite different.
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Theorem 2.5. Let G be a finite group, p a prime dividing |G| and pG̃ the universal p-Frattini
cover of G. Then, given a finite field F of characteristic p, any regular realization of G over F
yields a regular realization of pG̃ over F .

Proof. Starting from a regular realization N0/F (T ) of G, we construct inductively a projective
system (Nn/F (T ))n≥0 of regular Galois extension Nn/F (T ) with group n

pG̃, n ≥ 0. So, assume

Nn/F (T ) exists and observe that the canonical projection πn+1,n :p G̃n+1 �p G̃n is a Frattini
cover with elementary p-abelian kernel ker(πn+1,n) � Pn/Pn+1 � Frn

p . The corresponding
embedding problem

ΓF (T )

φn����

1 �� Frn
p

��
pG̃n+1

πn+1,n ��
pG̃n

�� 1

(where Nn = (F (T )s)ker(φn)) is thus a geometric Frattini embedding problem with p-group ker-
nel. Consequently, by [MMa99], theorem IV.8.3, it has a solution and, by [MMa99], proposition
IV.5.1, any solution is a geometric proper solution. Conclude there exists φn+1 : ΓF (T ) � pG̃n+1

such that πn+1,n ◦ φn+1 = φn and Nn+1 := (F (T )s)ker(φn+1)/F (T ) is regular. The existence of
F results from Harbater’s theorem V.2.7 [MMa99]; to get an explicit bound for |F |, choose
a covering G0 � G with G0 a centerless finite group (take for instance the wreath product
A|G| �w G of G with any centerless finite group A) and apply to G0 the procedure described in
[W98], proposition 4.2.5 [W98]. �

One can formulate theorem 2.1 in terms of Hurwitz spaces

Theorem 2.6. Let 1 → P → G
s→ G0 → 1 be a short exact sequence of profinite groups with G0

a finite group and P a projective pronilpotent group of finite rank. Then lim←−
n≥0

Hrn,Gn(k)noob = ∅

for any tower of Hurwitz spaces (Hrn+1,Gn+1 → Hrn,Gn)n≥0 associated with G and any field k
which is either a number field or a finite field of characteristic q not dividing p|G0|.
Proof. In the preceeding sections we have worked with the specific complete projective system
of finite groups (G/Pn+1 � G/Pn)n≥0 but our results remain true for any complete projective
system (Gn+1 � Gn)n≥0 of finite groups such that G = lim←−

n≥0

Gn. Indeed, if (si,n+1,nGi,n+1 �

Gi,n)n≥0, i = 1, 2 are two complete projective systems of finite groups such that G = lim←−
n≥0

Gi,n,

i = 1, 2, write si,n : G � Gi,n for the canonical projection and Pi,n := ker(si,n), n ≥ 0,
i = 1, 2. By [RZ00], lemma 2.1.1, (P1,n)n≥0 and (P2,n)n≥0 are two fundamental systems of open
neighbourhoods of 1 and, in particular, there exists two injective maps φ1, φ2 : N ↪→ N such
that P1,φ1(n) < P2,n and P2,φ2(n) < P1,n, n ≥ 0. This provides, for any tuple C of non trivial
conjugaccy classes of G, commutative diagrams of towers of Hurwitz spaces

Hri,φi(n+1),Gi,φi(n+1)
(Ci,φi(n+1))

��

�� Hrj,n+1,Gj,n+1
(Cj,n+1)

��
Hri,φi(n),Gi,φi(n)

(Ci,φi(n)) �� Hrj,n,Gj,n
(Cj,n)

1 ≤ i �= j ≤ 2

which shows that both towers (Hr1,n+1,G1,n+1(C1,n+1) → Hr1,n,G1,n(C1,n))n≥0 and (Hr2,n+1,G2,n+1(C2,n+1) →
Hr2,n,G2,n(C2,n))n≥0 have the same properties concerning their (projective systems of) rational
points. �



RATIONAL POINTS ON HURWITZ TOWERS 9

It is now natural to wonder if lim←−
n≥0

Hr,Gn(k) is empty as well. We will prove this fact in section

4 (theorem 4.1), as a corollary of the results of section 3.

3. Projective system of rational points

The aim of this section is to prove the following statement

Theorem 3.1. Let 1 → P → G
s→ G0 → 1 be a short exact sequence of profinite groups

with G0 a finite group and P a pronilpotent projective group of finite rank. Let k be a field of
characteristic 0. Then any regular Galois extension K/k(T ) with group G and field of moduli
k is defined over a finite extension k0/k.

We divide the proof into two steps. We explain first how to generalize the classical cohomo-
logical obstruction [ωf ] ∈ H2(k, Z(G)) for a k-G-cover f with group G and field of moduli k to

be defined over k to a projective system (fn)n≥0 of k-G-covers fn with group Gn and field of
moduli k. We then apply these results to reduce theorem 3.1 to a group theoretical statement.

3.1. Generalization of the field of moduli obstruction.

3.1.1. Notations. Let (sn+1,n : Gn+1 � Gn)n≥0 be a complete projective system of finite groups
and G := lim←

n≥0

Gn. For each n ≥ 0, denote by sn : G � Gn the canonical projection and by

Pn := ker(sn) its kernel. Given a field k of characteristic 0, any regular Galois extension K/k(T )
with group G and field of moduli k corresponds to a projective system (fn)n≥0 of k-G-covers
fn with group Gn and field of moduli k. Indeed, if K/k(T ) has field of moduli k then so do the
fn, n ≥ 0. Conversely, if for all n ≥ 0 fn has field of moduli k, for each σ ∈ Γk the number of
k-isomorphisms fn �σ fn is finite, which implies that K/k(T ) also has field of moduli k. We
come back to this in the following. For each n ≥ 0, let tn ∈ Urn(k) be the branch point divisor

of fn and Φn : πalg
k,tn

� Gn the corresponding group epimorphism. We get the commutative
diagrams

πalg
k,tn+1

en �� ��

Φn+1
����

πalg
k,tn

Φn
����

Gn+1
sn �� �� Gn

where en : πalg
k,tn+1

� πalg
k,tn

is the canonical restriction epimorphism defined by the Galois

extensions k(T ) < Mk,tn < Mk,tn+1 , n ≥ 0.

3.1.2. Projective system of splitting morphisms. Next, considering the projective system of
fundamental short exact sequences

1 �� πalg
k,tn+1

��

en
����

πar
k,tn+1

��

en

����

Γk
��

Id
��

1

1 �� πalg
k,tn

�� πar
k,tn

�� Γk
�� 1

observe that one can take the splitting morphisms (stn : Γk → πar
k,tn

)n≥0 in such a way that
en ◦ stn+1 = stn , n ≥ 0. Indeed, set M = ∪n≥0Mk,tn and choose t0 ∈ k; the Galois extension

M/k(T ) can be embedded into the field of Puiseux series k{{T−t0}}, on which Γk acts naturally.
This defines a splitting morphism s : Γk → Gal(M |k(T )) and so, by restriction, a compatible
system of splitting morphisms (stn = res|Mtn

◦ s : Γk → πar
k,tn

)n≥0. If k \ (k ∩ ∪n≥0tn) �= ∅
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(which, for instance, always occurs if k is uncountable), one can choose t0 ∈ k \ (k ∩ ∪n≥0tn),
embedding then M/k(T ) into the field of Laurent series k((T − t0)) as usual.

3.1.3. Action of Γk. Observe that for any n ≥ 0

stn = res|Mk,tn
◦ s = res|Mk,tn

◦ res|Mk,tn+1
◦ s

= en ◦ stn+1

and so, for any γ ∈ πar
k,tn+1

, σ ∈ Γk

en(stn+1(σ)γstn+1(σ)−1) = en ◦ stn+1(σ) en(γ) en ◦ stn+1(σ)−1

= stn(σ)en(γ)stn(σ)−1

3.1.4. Projective system of cohomological obstructions. Now, with the notations of 1.1, for any
n ≥ 0, σ ∈ Γk, there exists hn(σ) := h

stn
k,fn

(σ) ∈ Gn such that

Φn(stn(σ)γstn(σ)−1) = hn(σ)Φn(γ)hn(σ)−1, γ ∈ πar
k,tn

Denote by Hn(σ) ⊂ Gn the set of all such elements. From the surjectivity of en and the fact
that for any γ ∈ πar

k,tn+1
one has, on the one hand

sn+1,n ◦ Φn+1(stn+1(σ)γstn+1(σ)−1) = sn+1,n(hn+1(σ) Φn+1(γ) hn+1(σ)−1)
= sn+1,n(hn+1(σ)) Φn ◦ en(γ) sn+1,n(hn+1(σ)−1)

and, on the other hand,

sn+1,n ◦ Φn+1(stn+1(σ)γstn+1(σ)−1) = Φn ◦ en(stn+1(σ)γstn+1(σ)−1)
= Φn(stn(σ)en(γ)stn(σ)−1)

so, sn+1,n(hn+1(σ)) ∈ Hn(σ) that is, (Hn+1(σ) → Hn(σ)n≥0 is a projective system of non empty
finite sets. Hence, we can define maps h : Γk → G, σ → h(σ) = (hn(σ))n≥0 ∈ lim←−

n≥0

Hn(σ). Write

φn : Γk → Gn/Z(Gn), ωn : Γk × Γk → Z(Gn) and [ωn] ∈ H2(k, Z(Gn)), n ≥ 0 for the group
morphism, cochains and cohomological classes associated with hn : Γk → Gn, n ≥ 0. Similarly,
set

φ: Γk → G/Z(G)
σ → h(σ) [mod Z(G)]

, ω: Γk × Γk → Z(G)
(σ, τ) → h(στ)−1h(σ)h(τ)

, [ω] ∈ H2(k, Z(G))

Clearly, i◦φ = lim←−
n≥0

φn where i : G/Z(G) ↪→ lim←−
n≥0

Gn/Z(Gn) is the canonical monomorphism (note

that lim←−
n≥0

Z(Gn) = Z(G)). Likewise, ω = lim←−
n≥0

ωn and j([ω]) = lim←−
n≥0

[ωn] where j : H2(k, Z(G)) →

lim←−
n≥0

H2(k, Z(Gn)) is the canonical morphism. In particular, if [ω] is 0 in H2(k, Z(G)) then [ωn] is

0 in H2(k, Z(Gn)), n ≥ 0 so we call [ω] ∈ H2(k, Z(G)) the cohomological obstruction for the G-
covers (fn)n≥0 to be defined over k2. Furthermore, [ω] ∈ H2(k, Z(G)) being the cohomological
obstruction to solve the embedding problem

1 �� Z(G) �� G �� G/Z(G) �� 1

Γk

φ

��

we get

2Since, in general, the canonical morphism j is not injective, one cannot conclude that if [ωn] is 0 in
H2(k, Z(Gn)), n ≥ 0 then [ω] is 0 in H2(k, Z(G)).
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Proposition 3.2. (1) If Z(G) = {1} or if the short exact sequence 1 → Z(G) → G →
G/Z(G) → 1 is split, then any projective system (fn)n≥0 of k-G-covers fn with group Gn and
field of moduli k is a projective system of G-covers defined over k.
(2) If [G : Z(G)] is finite then any projective system (fn)n≥0 of k-G-covers fn with group Gn

and field of moduli k is defined over a finite extension k0/k of degree [k0 : k] ≤ [G : Z(G)].
(3) If Z(G) ∩ Pn0 = {1} for some n0 ≥ 0 then any projective system (fn)n≥0 of k-G-covers
fn with group Gn and field of moduli k is a projective system of G-covers defined over a finite
extension k0/k with [k0 : k] ≤ |Gn0 |.

Proof. (1) is straightforward, for (2), take for instance k0 = k
ker(φ)

and, for (3), if Z(G)∩Pn0 =
{1}, there is canonical commutative diagram

1 �� sn0(Z(G)) �� Gn0

πn0�� Gn0/Z(G) �� 1

1 �� Z(G) ��

	
��

G ��

sn0

����

G/Z(G) ��

sn0

��

1

Γk

φ

��∃φ

��

and [sn0 ◦ ω] ∈ H2(k, sn0(Z(G))) is the cohomological obstruction for the existence of a group

morphism φ : Γk → Gn0 such that πn0 ◦ φ = sn0 ◦ φ. As a result, setting k0 := k
ker(sn0◦φ)

(which is a degree [Gn0 : Z(G)] extension of k) one has [sn0 ◦ ω] = 0 in H2(k0, sn0(Z(G))), that
is, sn0 ◦ ω is a coboundary and, since sn0 is injective on Z(G), so is ω: conclude [ω] = 0 in
H2(k0, Z(G)). �

To end this section, let us give a geometrical interpretation of these results. Given an integer
r ≥ 3 and a finite group G we denote by Hr,G(k)noob the set of k-non obstruction that is, the set
of all k-rational points on Hr,G corresponding to G-covers defined over k. With this notation:

Corollary 3.3. If Z(G) = {1} or if the short exact sequence 1 → Z(G) → G → G/Z(G) → 1
is split then any projective system of k-rational points on any tower (Hrn+1,Gn+1 → Hrn,Gn)n≥0

of Hurwitz spaces associated with the projective system (sn : Gn+1 � Gn)n≥0 actually lies in
lim←
n≥0

Hrn,Gn(k)noob.

3.2. Proof of theorem 3.1. We consider first the case when P is a free pro-p group of finite
rank and then deduce the general case.

3.2.1. Two lemmas. In this paragraph, assume P is a free pro-p group of finite rank. By
proposition 3.2, it is enough to prove that Z(G)∩Pn0 = {1} for some n0 ≥ 0 or that [G : Z(G)]
is finite. We consider separately the case rank(P ) ≥ 2 and rank(P ) = 1.

Lemma 3.4. (rank(P ) ≥ 2) If rank(P ) ≥ 2 then P ∩ Z(G) = {1}.
Proof. Assume there exists x = (xn)n≥0 ∈ P ∩Z(G)\{1} and let n0 ≥ 0 be the smallest integer
such that x ∈ Pn0\Pn0+1. Then, according to [RZ00], corollary 3.6.4, Pn0 is a free pro-p group of
rank rank(Pn0) = 1+[P0 : Pn0 ](rank(P0)−1) ≥ 2. And since x ∈ Pn0 is non zero modulo Pn0+1,
corollary 7.6.10 of [RZ00] shows there exists (u2, ..., ur) ∈ Pn0 such that (x, u2, ..., ur) ∈ Pn0

freely generate Pn0 . The group Pn0 can be viewed as the free product < x >
∐

< u2, ..., ur >
so, according to [RZ00], theorem 9.1.12, for any y ∈ Pn0\ < x > one has < x > ∩ < xy >= {1},
in particular x−1xy �= 1: a contradiction since x ∈ Z(G). �
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Lemma 3.5. (rank(P ) = 1) If rank(P ) = 1 then either P ∩Z(G) = {1} or [G : Z(G)] is finite
and, furthermore, if one of the two following condition is fulfilled: (i) [G, G] is not finite or (ii)

for each n ≥ 0, p| |Gn|, Gn is p-perfect and the short exact sequences 1 → Pn → G
sn→ Gn → 1

is unsplit, then P ∩ Z(G) = {1}.
Proof. If rank(P ) = 1 and P ∩Z(G) �= {1} then by [RZ00], proposition 2.7.1, P ∩Z(G) =< x >
for some x = (xn)n≥0 ∈ P \ {1} and [P :< x >] is finite. As a result, [G : Z(G) ∩ P ] = [G :
P ][P :< x >] = |G0|[P :< x >] is finite and so, [G : Z(G)] is too, whence the first assertion of
lemma 3.5.

As for the second one, assume once again that P ∩ Z(G) =< x > for some x = (xn)n≥0 ∈
P \ {1} and observe that Pn � pnZp, n ≥ 0 thus, if n0 is the smallest integer such that
x ∈ Pn0 \ Pn0+1 we have Pn0 =< x >< Z(G).
(i) Now, since G is finitely generated, let g̃1, ..., g̃r ∈ G be a generating system of G and set
sn0(g̃i) = gi, i = 1, ..., r. Denote by Fr the pro-free group with r generators γ1, ..., γr. The
universal property of Fr allows us to define uniquely two epimorphisms u : Fr � Gn0 and
ũ : Fr � G mapping γi to gi and g̃i respectively; in particular s ◦ ũ = u. Set N = ker(u) then,
since Pn0 is central, ũ([N, Fr]) < [Pn0 , G] = {1}. Thus, we obtain the following commutative
diagram of short exact sequences

1 �� N ∩ [Fr, Fr]/[N, Fr] ��

��

[Fr, Fr]/[N, Fr]
u ��

ũ
0

����

[Gn0 , Gn0 ] ��

Id
��

1

1 �� Pn0
�� [G, G]

s �� [Gn0 , Gn0 ] �� 1

But, by Schur’s theorem, N ∩ [Fr, Fr]/[N, Fr] � M(Gn0) is the Schur multiplier of Gn0 and, in
particular, it is of finite exponent which implies, Pn0 being torsion free, that N∩[Fr, Fr]/[N, Fr] ⊂
ker(ũ

0
) thus, the above commutative diagramm yields the following one

1 �� 1 ��

��

[Fr, Fr]/N ∩ [Fr, Fr]
u ��

ũ����

[Gn0 , Gn0 ] ��

Id
��

1

1 �� Pn0
�� [G, G]

s �� [Gn0 , Gn0 ] �� 1

where ũ maps a finite group onto a non finite group: a contradiction.
(ii) If Gn0 is p-perfect then, denoting by M(Gn0)p the p-part of the Schur multiplier of Gn0

there exists a central extension 1 → M(Gn0)p → Ĝp
n0

u→ Gn0 → 1 which is universal for central
extensions of Gn0 with p-group kernel [BF02], §3.6. Consequently, there exists a canonical
commutative diagram

1 �� M(Gn0)p
��

��

Ĝp
n0

u ��

ũ

��

Gn0
��

Id

��

1

1 �� Pn0
�� G

s �� Gn0
�� 1

so, using once again the fact that M(Gn0)p is of finite exponent and Pn0 is torsion free, we have
M(Gn0)p ⊂ ker(ũ), which leads to a commutative diagram

1 �� 1 ��

��

Ĝp
n0/M(Gn0)p

u ��

ũ
��

Gn0
��

Id

��

1

1 �� Pn0
�� [G, G]

s �� Gn0
�� 1
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so ũ ◦ u−1 provides a section of sn0 : a contradiction. �

Remark 3.6. Proposition 3.2 leads to a statement slighty more precise than theorem 3.1: Let 1 → P →
G

s→ G0 → 1 be a short exact sequence of profinite groups with G0 a finite group and P a free pro-p group of
finite rank. Let k be a field of characteristic 0 and K/k(T ) a regular Galois extension with group G and field of
moduli k, then
- If P ∩Z(G) = {1} (for instance, if rank(P ) ≥ 2 or if one of the two conditions (i), (ii) above is fulfilled) then
K/k(T ) is defined over a field extension k0/k of degree [k0 : k] ≤ |G0|.
- Else, K/k(T ) is defined over a finite extension k0/k with [k0 : k] ≤ [G : Z(G)].

In particular, when considering the universal p-Frattini cover pφ̃ :p G̃ � G of a finite p-perfect

group G, for each n ≥ 0 n
p φ̃ :p G̃ �n

p G̃ is the universal p-Frattini cover of n
pG̃ and, as a result,

does not split. Consequently, Z(pG̃) ∩ P = {1} and one obtains

Corollary 3.7. 3 Let G be a finite group and p a prime dividing |G| such that G is p-perfect.
Then any regular Galois extension K/k(T ) with group the universal p-Frattini cover n

pG̃ of G
is defined over a field extension k0/k of degree [k0 : k] ≤ |G|.
3.2.2. The general case. Consider now the case when P is a pronilpotent projective group, that
is it can be written as the direct product P � ∏

p| |P | Pp of its Sylow subgroups and, for each

p| |P |, Pp is a free pro-p group of finite rank. From the fact that Pp is a characteristic subgroup
of P , p| |P |, deduce that Z(G) ∩ P � ∏

p| |P | Z(G) ∩ Pp. Denote by S1 the set of those prime

p||P | such that Z(G)∩Pp = {1}, by S2 the set of those prime p| |P | such that Z(G)∩Pp �= {1}
and write Qi =

∏
p∈Si

Pp, i = 1, 2. Then,

- P/Q2 ∩ Z(G/Q2) = {1} (indeed, for any g1 ∈ Q1, if g1gg−1
1 g−1 ∈ Q2 for all g ∈ G then, since

Q1 is a characteristic subgroup of P , one also has g1gg−1
1 g−1 ∈ Q1 for all g ∈ G and, as a result,

g1 ∈ Z(G)∩Q1 = {1}). So, according to proposition 3.2 (3), KQ2/k(T ) is defined over a finite
extension k2/k.
- [G/Q1 : Z(G/Q1)] is finite (indeed, since Z(G) ∩ Q1 = {1}, Z(G) is a subgroup of Z(G/Q1)
and, [G/Q1 : Z(G/Q1)] divides [G/Q1 : (Z(G) ∩ P )/Q1] with [G/Q1 : (Z(G) ∩ P )/Q1] =
|G0|[P/Q1 : (Z(G) ∩ P )/Q1] = |G0|[Q2 : Z(G) ∩ Q2], which is finite by lemmas 3.4 and 3.5).
So, according to proposition 3.2 (2), KQ1/k(T ) is defined over a finite extension k1/k.
- Set k0 = k1.k2, then KQi/k(T ) is defined over k0 that is, there exists a regular Galois extension

Ki/k0(T ) with group G/Qi such that Ki.k = KQi , i = 1, 2. Furthermore, KQ2

1 .k = KP =

KQ1

2 .k, so, up to taking a finite extension of k0, we may assume that KQ2

1 = KQ1

2 =: K0.
Conclude by showing that K1.K2/k0(T ) is a model for K/k(T ). For this, set Qi,n =

∏
p∈Si

Pp,n,

Ki,n = K
Qi,n

i /k0(T ), i = 1, 2 and Kn = K1,n.K2,n/k0(T ), n ≥ 0. Then K1.K2 = ∪n≥0Kn, which

implies K1.K2.k = K. So, we are left to show that K1.K2/k0(T ) is regular or, equivalently,
that Kn/k0(T ) is regular, n ≥ 0. This, in turn, is equivalent to [Kn.k : k(T )] = [Kn : k0(T )].
On the one hand,

[Kn.k : k(T )] = [Kn.k : KP ]|G0|
= [KQ1,n .KQ2,n : KP ]|G0|
= [KQ1,n : KP ][KQ2,n : KP ]|G0|
= [K1,n : K0][K2,n : K0]|G0|

and, on the other hand, [Kn : k0(T )] = [Kn : K0]|G0|. But, [Ki,n : K0]|[Kn : K0], i = 1, 2,
which entails [K1,n : K0][K2,n : K0]|[Kn : K0] (since (|Q1/Q1,n|, |Q2/Q2,n|) = 1) and so [K1,n :
K0][K2,n : K0] = [Kn : K0].

3K.Kimura also obtained corollary 3.7, giving furthermore a precise description of the center Z(pG̃) of the
universal p-Frattini cover of G.
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4. Applications

4.1. Projective systems of rational points on towers of Hurwitz spaces. As an im-
mediate consequence of theorems 2.1 and 3.1, one obtains the announced arithmetic property
about projective systems of k-rational points on tower of Hurwitz spaces when k is a number
field.

Theorem 4.1. Let G be a profinite group admitting a quotient G presented as an extension of
a finite group G0 by a free pro-p group of finite rank. Then there is no Galois extension K/k(T )
with group G and field of moduli a number field k. In other words, lim←−

n≥0

Hr,Gn(k) = ∅ for any

tower of Hurwitz spaces (Hr,Gn+1 → Hr,Gn)n≥0 associated with G and any number field k.

Proof. Let N be the kernel of the epimorphism G � G. Then KN/k(T ) is a Galois extension
with group G and field of moduli k. So, according to theorem 3.1, KN/k(T ) is defined over a
finite extension k0/k, which contradicts theorem 2.1. �

As a special case of theorem 4.1, we obtain the following generalization of theorem 6.1 [BF02]

Corollary 4.2. Let C a r-tuple of non trivial p’-conjugacy classes of G such that sni(C) �= ∅.
Then there is no projective systems of k points on the modular tower defined by the data (G, p,C)
for any number field k/Q.

In the following, let 1 → P → G
s→ G0 → 1 be a short exact sequence of profinite groups

with G0 a finite group and P a pronilpotent projective group of finite rank. Here is another
consequence of theorem 3.1

Corollary 4.3. G can be regularly realized over an algebraic extension k/Q where only a finite
number of primes ramify.

Proof. By construction, G is finitely generated so, let g1, ..., gr ∈ G be a generating system
of G such that g1 · · · gr = 1 and denote by Ci the conjugacy class of gi, i = 1, ..., r. Set C =
(C1, ..., Cr) and let Cn = (C1,n, ..., Cr,n) be the canonical image of C in Gn,P := G/

∏
p| |P | Pp,n,

n ≥ 0. The projective system of r-tuples (Cn)n≥0 defines a tower of Hurwitz spaces

H := (Hr,Gn+1,P
(Cn+1) → Hr,Gn,P

(Cn))n≥0

Consider then any t ∈ Ur(Q) and a projective system of points (pn)n≥0 on H above t. Each
pn corresponds to a G-cover fn with invariants Gn,P , Cn, t and field of moduli kn, n ≥ 0.
Denote by St the finite set of primes where t has bad reduction and by S(|G0|) the set of
all prime divisors of |G0|. By Beckmann’s theorem [Be89], the only primes which may ramify
in k := ∪n≥0kn are those from St ∪ S(|G0|) ∪ {p|P |} and since all the (fn)n≥0 have their field
of moduli contained in k, theorem 3.1 implies they all are defined over a finite extension k0/k. �

Corollary 4.4. G is the Galois group of an algebraic extension k/Q where only a finite number
of primes ramify.

Proof. By corollary 4.3, there exists a regular Galois extension K/k(T ) with group G, a finite
number of branch points and such that k/Q is an algebraic extension where only a finite number
of primes - p1, ..., pn - ramify. In particular, k is contained in the maximal algebraic extension
Qp1,...,pn/Q unramified outside p1, ..., pr. Let q /∈ {p1, ..., pn} a prime then Qp1,...,pn(

√
q)/Qp1,...,pn

is a proper quadratic extension (indeed, q ramifies in Q(
√

q)/Q!) and Qp1,...,pn/Q being Galois,

deduce from Weissauer’s theorem that k̃ := Qp1,...,pn(
√

q) is Hilbertian. Now, observe that G
verifies (iv) of [S89], proposition 10.6, which allows us to conclude thanks to [S89], theorem
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10.6. �

Finally, as already noticed, theorem 2.1 is also true for any finite field F of characteristic q not

dividing p|G0|. Likewise, replacing πalg
k,t , πar

k,t by their tame analogs πtame
1 (P1

F
\ t), πtame

1 (P1
F \

t), the proof of theorem 3.1 remains unchanged and we obtain: For any finite field F of
characteristic prime to p|G0| any regular extension K/F (T ) with group G and field of moduli F
is defined over a finite extension F0/F . Now, define for each prime q the subset X0

r (q) ⊂ Ur(Q)
of all the divisors t ∈ Ur(Q) having good reduction at q and, given a number field k, by Xr(k, q)
the PGL2(k)-orbit of X0

r (q). Then

Proposition 4.5. Still with the same notations:
- For any tuple C of non trivial conjugacy classes of G, if Cn denotes the image of C in Gn,
for any prime q not dividing |G|, any integer d ≥ 1 there exists n(C, q, d) ≥ 0 such that⋃

[k:Q]≤d

Ψ−1

rn,np G̃
(Xr(k, q)) ∩Hrn,Gn(Cn)(k) = ∅, n ≥ n(C, q, d).

- For any prime q not dividing |G| and any finite extension k/Qq, there exists a regular real-
ization of G over k iff G is generated by a finite number of elements of finite order and, in that
case, any regular realization of G over k has a finite branch point divisor with bad reduction at
q.

Proof. From [W98], corollary 4.2.3 and the remark following it, for any prime q not dividing |G|
the tower of Hurwitz spaces (Hrn+1,Gn+1(Cn+1) → Hrn,Gn(Cn))n≥0 has good reduction modulo
q. For any n ≥ 0, let fn : Xn → P1

Q
be a G-cover with invariants Gn, tn, Cn and field of moduli

a number field kn such that [kn : Q] = d (that is a kn-rational point pn on Hr,Gn(Cn)). Assume
furthermore that for some prime q not dividing |G|, tn ∈ Xr(k, q) for all n ≥ 0 then, up to
translating by elements of PGL2(k), one may assume that tn ∈ X0

r (q) for all n ≥ 0. As a result,
for any place Qn of kn dividing q, fn has good reduction modulo Qn and reduces to a G-cover fn

with invariants Gn, tn, Cn and field of moduli contained in Fqd (that is a Fqd-rational point pn

on the reduced Hurwitz space Hq

rn,np G̃(Cn))4. This produces a projective system of non-empty

finite sets
(Hq

rn+1,n+1
p G̃(Cn+1)(Fqm) → Hq

rn,np G̃(Cn)(Fqm))n≥0

the projective limit of which should be empty by the finite field version of theorem 4.1: a
contradiction.

For the second part of the claim, the only if condition results from the fact lemma 2.3 holds
for any field k of characteristic 0 such that [k ∩ Qab : Q] is finite so any regular realization
K/k(T ) of G has only inertia groups of finite orders but then, these are the ones of the finite
extension KP /k(T ) so there are only finitely many of them. The if condition can be proved us-
ing Pop’s Half Riemann existence theorem [P94] as in [DDes04]. The last assertion is obtained
by reducing modulo q as above. �

Remark 4.6. The second part of proposition 4.5 leads to the following stronger version of theorem 4.1: For
any algebraic extension k/Q such that lim←−

n≥0

Hrn,Gn(Cn)(k) �= ∅ there are only finitely many primes q having an

extension Q in k/Q with finite residue field and finite ramification indice.

4Indeed, if Q is any place of Q dividing Qn, identifying ΓFq
with DQ/IQ (where DQ and IQ respectively denote

the decomposition and inertia groups of Q in Q/Q), the reduction modulo Q yields a canonical Galois-equivariant
isomorphism c : (πalg

Q,t)
(q′) � (πalg

Fq,t)
(q′) and, if fn corresponds to a group epimorphism Φfn

: (πalg
Q,t)

(q′) �n
p G̃

then fn corresponds to Φfn ◦ c−1.



16 ANNA CADORET

4.2. The abelianization procedure. We re-use in this section the method of lemmas 2.2, 2.3
to give an effective estimation of n(C, q, d)noob (where n(C, q, d)noob is defined as in proposition
4.5 but considering only the non obstruction locus) when C is a finite tuple of non trivial
conjugacy classes of elements of finite order and discuss one of Fried’s conjectures for modular
towers.

We first described what we call the abelianization procedure. We still consider a short exact
sequence of profinite groups 1 → P → G → G0 → 1 with G0 a finite group and P a free pro-p
group of finite rank ρ. As in lemmas 2.2, 2.3, write G = G/P ab, Gn = G/(P ab)n, n ≥ 0 and for
any tuple C of conjugacy classes of G, C for the image of C in G � G and Cn for the image
of C in G � G � Gn, n ≥ 0. From the canonical commutative diagrams of finite groups (*)
one deduces the canonical commutative diagrams of Hurwitz spaces (**)

(∗) Gn+1
�� ��

����

Gn+1

����
Gn

�� �� Gn

(∗∗) Hrn+1,Gn+1(Cn+1) �� ��

����

Hrn+1,Gn+1
(Cn+1)

����

Hrn,Gn(Cn) �� �� Hrn,Gn
(Cn)

We call the right-hand sides of diagrams (*), (**) the abelianized situation corresponding to
G, C.

From now on, assume furthermore C = (C1, ..., Cr) is a r-tuple of non trivial conjugacy classes
of elements of finite order and write ni for the order of any element of C0,i, i = 1, ..., r. Then,
given a number field k, any G-cover fn : Xn → P1

k defined over k with invariants Gn, Cn induces
a G-cover fn : Xn → P1

k defined over k with invariants Gn, Cn. Denote by f0 : X0 → P1
k the

quotient of fn modulo P ab/(P ab)n � (Z/pnZ)ρ (which is also the quotient of fn modulo P/Pn);
it is defined over k with invariants G0, C0. Furthermore, with n(C0) = max1≤i≤t{ni}, one can

always find a field extension k0/k of degree [k0 : k] ≤ |G|
n(C0)

such that X0(k0) �= ∅. Furthermore,

since Xn×k k0 → X0×k k0 is an etale cover defined over k0 with group P ab/(P ab)n, it rises from
a cartesian diagram

Xn ×k k0
��

��
�

An

��
X0 ×k k0

�� Jac(X0 ×k k0)

where An is an abelian variety defined over k0, isogenous to Jac(X0 ×k k0) and carrying a k0-
torsion point of order pn. Conclude

Abelianization procedure conclusion:Given a number field k and an integer n ≥ 0, any
G-cover fn : Xn → P1

k defined over k with invariants Gn, Cn gives rise to an abelian variety

An defined over an extension k0 of k of degree [k0 : k] ≤ |G|
n(C0)

, isogenous to Jac(X0 ×k k0) and

carrying a k0-torsion point of order pn.

We are going to use this conclusion to give an effective bound for n(C, q, d)noob. For this,
define

g(C0) = 1 + |G|(1
2

r∑
i=1

ni − 1

ni

− 1)

and, given integers g, n, m ≥ 1,

c(g, n, m) = nmg + 2gn(m−1)/2 + (2g − 2g − 1)nm−1

With these notations, we can state
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Proposition 4.7.

n(C, q, d)noob ≤ ln(c(g(C0), q
d|G0|/n(C0), 1))

ln(p)

Proof. Let k be any number field such that [k : Q] ≤ d and fn : Xn → P1
k be a G-cover

defined over k with invariants Gn, Cn, t. Let q be a prime not dividing p|G0| and such that
t ∈ Xr(k, q); up to translating fn by an element of PGL2(k), we can assume t ∈ X0

r (q). Let
Q be any place of k0 dividing q then X0 has good reduction at Q and, consequently, so does
Jac(X0 ×k k0). As a result, if F denotes the residue field of k0 at Q, pn| |Jac(X0 ×k k0)|Q(F )
so, in particular,

n ≤ ln(|Jac(X0 ×k k0)|Q(F ))

ln(p)

Writing Fm for the unique degree m extension of F (in a given algebraic closure of F ), we

are left to compute |Jac(X0 ×k k0)|Q(Fm). For this observe that by Riemann-Hurwitz formula,

X0 has genus g = g(C0) so Jac(X0 ×k k0)|Q is a g-dimensional abelian variety defined over F
which, by Lang-Weil bounds [Mi86], theorem 9.1, yields

||Jac(X0 ×k k0)|Q(Fm)| − |F |mg| ≤ 2g|F |(m−1)/2 + (2g − 2g − 1)|F |m−1

and conclude using |F | ≤ qd|G0|/n(C0). �

The proof of proposition 4.7 shows that, writing Y 0
r (k, q) for the set of all the divisor

t ∈ Ur(Q) such that the jacobian Jac(X0) of any G-cover f0 : X0 → P1
k with invariants

G0, C0, t has good reduction at any place Q of k dividing q and Yr(k, q) for its PGL2(k)-orbit,
we have For any r-tuple C of non trivial conjugacy classes of elements of finite order, for
any prime q not dividing p|G0| and for any integer d ≥ 1 there exists n(C, q, d)noob ≥ 0 such

that
⋃

[k:Q]≤d

Ψ−1
r,Gn

(Yr(k, q)) ∩ Hr,Gn(Cn)(k)noob = ∅, n ≥ n(C, q, d)noob. The proof of proposition

4.10 shows that up to enlarge n(C, q, d)noob this statement remains true without the ”noob”
labellings provided that Z(G) ∩ P = {1}.

Consider the following variant of Fried’s conjectures for modular towers [FK97], [D04]

Conjecture 4.8. (Fried) Let G be a p-perfect finite group then, for any integer r ≥ 3, any
r-tuple C of p′-conjugacy classes of G and any integer d ≥ 1 there exists n(d, g(C)) ≥ 0 such
that ⋃

[k:Q]≤d

Hr,np G̃(Cn)(k) = ∅, for each n ≥ n(d, g(C))

The abelianization procedure statement suggests it is connected to the Strong Torsion Con-
jecture for abelian varieties [Si92], [Ka98]

Conjecture 4.9. (S.T.C.) Given two integers g, d ≥ 1, there exists an integer n(d, g) ≥ 1 such
that the set of all abelian varieties A (i) defined over a number field k of degree [k : Q] ≤ d, (ii)
of dimension g and (iii) carrying a k-rational torsion point of order n is empty for n ≥ n(d, g).

Indeed, conjecture 4.9 combined with the abelianization procedure conclusion and the argu-

ments of the proof of proposition 4.7 implies that with n(d, g(C))noob := n(g(C), d|G|
n(C)

) ≥ 0 such

that ⋃
[k:Q]≤d

Hr,np G̃(Cn)(k)noob = ∅, for each n ≥ n(d, g(C))noob

and this result yields
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Proposition 4.10. Conjecture 4.9 implies conjecture 4.8.

Proof. From lemmas 3.4, 3.5 we have P ∩ Z(pG̃) = {1} so, in particular, for each n ≥
0 there exists Nn ≥ n such that the image of P/PNn ∩ Z(Nn

p G̃) in P/Pn ∩ Z(n
pG̃) via the

canonical epimorphism sNn,n is trivial (recall that P ∩ Z(pG̃) = lim←
n≥0

P/Pn ∩ Z(n
pG̃)). Setting

n1 = n(g(C), d|G|
n(C)

)

n2 = Nn1

d0 = |G|

we are going to show that for any integer d ≥ d0

⋃
[k:Q]≤d/d0

Hr,np G̃(Cn)(k) = ∅, for each n ≥ n2

Indeed, let k be any number field such that [k : Q] ≤ d/d0 and suppose there exists a G-cover
fn2 : Xn2 → P1

Q
with invariants n2

p G̃, Cn2 and field of moduli k. Denote by fn1 its quotient

modulo Pn1/Pn2 . Let [ωn2 ] ∈ H2(k, Z(n2
p G̃)) be the cohomological obstruction for fn2 to be

defined over k then [sn2,n1 ◦ωn2 ] ∈ H2(k, Z(n1
p G̃)) is the cohomological obstruction for fn1 to be

defined over k. Consider the following canonical diagram

1 �� sn2,0(Z(n2
p G̃)) �� G �� G/sn2,0(Z(n2

p G̃)) �� 1

1 �� Z(n2
p G̃) ��

	
��

n2
p G̃ ��

sn2,0

����

n2
p G̃/Z(n2

p G̃) ��

sn2,0

��

1

Γk

φn2

��

and set k0 := k
ker(sn2,0◦φn2

)
. Then [sn2,0 ◦ ωn2 ] = 0 in H2(k0, sn2,0(Z(n2

p G̃))) that is there exists

h̃ : Γk0 → sn2,0(Z(n2
p G̃)) such that sn2,0 ◦ ωn2(σ, τ) = h̃(στ)−1h̃(σ)h̃(τ), σ, τ ∈ Γk0 . Since

sn2,0 : Z(Gn2) � sn2,0(
n2
p G̃)) is an epimorphism, one can define a map h̃n2 : Γk0 → Z(n2

p G̃) such

that sn2 ◦ h̃n2 = h̃ and thus a coboundary

ω̃n2 : Γ2
k0

→ Z(n2
p G̃)

σ, τ → h̃n2(στ)−1h̃n2(σ)h̃n2(τ)

Now, up to replacing ωn2 by the equivalent cocycle ωn2ω̃
−1
n2

, one has sn2,0 ◦ ωn2 = 0 that is

Im(ωn2) < P/Pn2 ∩ Z(n2
p G̃). But then, by definition of n2, we have sn2,n1 ◦ ωn2 = 0 and, conse-

quently, fn1 is defined over k0, which contradicts the definition of n1. �

Remark 4.11. In conjecture 4.8, replace the bound n(d, g(C)) by a bound n(d, g(C), p) depending further-
more on p. Likewise, in conjecture 4.9, replace the bound n(d, g) by a bound n(d, g, p) also depending on p and
condition (iii) by condition (iii)’ carrying a k-rational torsion point of order pn. We thus obtain two weaker
conjectures for which proposition 4.10 remains true.

The discussion above provides a conjectural approach of conjecture 4.8. When considering
the weaker form of conjecture 4.8 obtained by replacing the bound n(C, d) by a bound n(C, k)
depending on the number field k, there is an alternative conjectural approach, based on re-
duced modular towers (Hrd

r,n+1
p G̃

(Cn+1) → Hrd
r,np G̃

(Cn))n≥0 (we refer to [FK97] or [DF99] for the

existence and properties of reduced Hurwitz spaces. In brief, Hrd
r,G(C) is the quotient space

Hr,G(C)/PSL2(C) where the action of PSL2(C) on Hr,G(C) is obtained by extending the one of
PSL2(C) on Ur(C) and, in particular, it is a r− 3-dimensional variety). This approach consists
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in proving that all the geometrically irreducible component of Hrd
r,np G̃

(Cn) are of general type

(of genus ≥ 2 when r = 4) and then, relying on Bombieri-Lang conjecture (Faltings’ theorem
when r = 4), obtaining that if Hrd

r,np G̃
(Cn)(k) �= ∅ for all n ≥ 0 then lim←−

n≥0

Hrd
r,np G̃

(Cn)(k) �= ∅. Up

to taking a finite extension k0/k, this entails that lim←−
n≥0

Hr,np G̃(Cn)(k0) �= ∅, [DF99] §6.5, contra-

dicting theorem 4.1. When r = 4, M. Fried gives in [F04] an outline of the proof of the fact all
the geometrically irreducible components of Hrd

4,np G̃
(Cn) have genus ≥ 2 for n large enough.
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