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Abstract. We study “pure-cycle” Hurwitz spaces, parametrizing covers of the projective line having
only one ramified point over each branch point. We start with the case of genus-0 covers, using
a combination of limit linear series theory and group theory to show that these spaces are always
irreducible. In the case of four branch points, we also compute the associated Hurwitz numbers.
Finally, we give a conditional result in the higher-genus case, requiring at least 3g simply branched
points. These results have equivalent formulations in group theory, and in this setting complement
results of Conway-Fried-Parker-Völklein.

1. Introduction. In this paper, we use a combination of geometric and
group-theoretic techniques to prove a result with equivalent statements in both
fields. The geometric statement is that certain genus-0 Hurwitz spaces (the “pure-
cycle” cases) are always irreducible, while the group-theoretic statement is that
the corresponding factorizations into cycles always lie in a single pure braid group
orbit. “Pure-cycle” refers to the hypothesis that for our covers, there is only a
single ramified point over each branch point. The main significance for us of this
condition is that it allows us to pass relatively freely between the point of view
of branched covers, where one moves the branch points freely on the base curve,
and linear series, where one moves the ramification points freely on the covering
curve. This facilitates induction, as it is easier to stay within the pure-cycle case
from the point of view of linear series.

Our result is close to optimal in the sense that if one drops either of the
pure-cycle or genus-0 hypotheses, one quickly runs into cases where the Hurwitz
spaces have more than one component. However, we do prove a conditional gen-
eralization to higher-genus pure-cycle Hurwitz spaces having at least 3g simply
branched points, depending on a positive answer to a different geometric question
which is closely related to an old question of Zariski.

Our immediate motivation for studying the pure-cycle situation is its relation
to linear series: specifically, if one wishes to prove statements on branched covers
via linear series arguments, the pure-cycle situation is the natural context to
examine. A good understanding of the classical situation is therefore important

Manuscript received October 31, 2006.
Research of the first author supported by fellowships from the Clay Mathematics Institute and MSRI;

research of the second author supported in part by a fellowship from the National Science Foundation during
the preparation of this paper.

American Journal of Mathematics 130 (2008), 0–00. c© 2008 by The Johns Hopkins University Press.

1



2 FU LIU AND BRIAN OSSERMAN

to studying other cases, such as that of positive characteristic. In particular, our
main theorem allows for a much simpler proof of a stronger result in [17] than
would otherwise be possible, producing sharp Riemann-existence-type results for
certain classes of tamely branched branched covers. However, we also remark
that a good understanding of the components of Hurwitz spaces has given rise
to a wide range of substantial applications: the classical proof of Severi thatMg

is connected [11]; number-theoretic applications such as Davenport’s problem,
and Thompson’s genus-0 problems in group theory, both due to Fried [5]; and
the Fried-Völklein description of the absolute Galois group of certain fields in
inverse Galois theory [9], [10]. As such, our results have significant potential for
applications in the direction of inverse Galois theory. Already, our explicit results
in the case of 4 branch points have been used by Fried in [8] to verify his Main
Conjecture for modular towers in an infinite family of new examples; see the end
of §5 below for a brief synopsis.

We now state our results more precisely. We will recall/fix our terminology
in the next section.

The following proposition is well known, although the equivalence of the
first two and last two conditions depends heavily on the fact that we restrict our
attention to covers with a single ramified point over each branch point. We will
recall the proof in the following section.

PROPOSITION 1.1. Given d and �e = (e1, . . . , er) with 2d − 2 =
∑

i (ei − 1), the
following are equivalent:

(a) the Hurwitz factorizations for (d, r, 0,�e) all lie in a single orbit of the pure
braid group.

(b) the spaceH(d, r, 0,�e) is irreducible, whereH(d, r, 0,�e) is the Hurwitz space
parametrizing r distinct points Q1, . . . , Qr on P1 together with a genus-0 cover of
P

1, such that each Qi has a single point over it ramified to order ei, and the rest
unramified;

(c) the space MR := MR(P1,P1,�e) is irreducible, where MR is the space
parametrizing r distinct points P1, . . . , Pr on P1 together with a rational func-
tion f : P1 → P

1 of degree d and ramified to order ei at Pi (on the source curve)
for all i;

(d) the space G1
d := G1

d(P1,�e) is irreducible, where G1
d is the space parametriz-

ing r distinct points P1, . . . , Pr on P1 together with a linear series of dimension 1
and degree d, having ramification ei at Pi for all i;

Our main theorem is then the following:

THEOREM 1.2. Given d, r and e1, . . . , er with 2d−2 =
∑

i (ei−1), the equivalent
conditions of Proposition 1.1 always hold.

Our proof follows the general structure of Eisenbud and Harris’ argument
in [3], where they prove the irreducibility of certain families of linear series
without prescribed ramification. However, while they work exclusively from the
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perspective of linear series, we have to switch back and forth between points
of view. Starting from the perspective of linear series, we use a degeneration
argument and the tools of limit linear series to reduce to a base case of four
points on P1, and then solve that case directly, after switching to the group-
theoretic point of view of Hurwitz factorizations. Our explicit work in the base
case also computes the Hurwitz numbers for that case:

THEOREM 1.3. Given d and�e = (e1, . . . , e4) with 2d− 2 =
∑

i (ei− 1), we have
the following formula for the Hurwitz number:

h(d, r, 0,�e) = min{ei(d + 1− ei)}i.

We can also describe the Hurwitz factorizations in this case completely
explicitly.

In Theorem 5.5 below, we again use limit linear series techniques to prove a
conditional version of Theorem 1.2 for pure-cycle cases of higher genus having
at least 3g simply branched points, depending on a positive answer to Question
5.4 below, a geometric question closely related to an old question of Zariski.

We conclude by arguing that the combination of the genus-0 and pure-cycle
conditions imply that our monodromy groups are always either cyclic, Sd, or Ad;
we show this, independently of the proof of our main results, in Theorem 5.3
below.

Our higher-genus result could be seen as having the spirit of an effective
version in the pure-cycle case of results of Conway-Fried-Parker-Völklein [9,
Appendix]. Our main theorem also generalizes a theorem of Fried [7, Thm.
1.2], which implies the case of our Theorem 1.2 in which ei = 3 for all i. Fi-
nally, Hurwitz spaces of polynomial covers were considered by Khovanskii and
Zdravkovska in [13], where in particular they recovered our result in the case of
polynomial pure-cycle covers.

Acknowledgments. We would like to thank Michael Fried, Kay Magaard
and David Harbater for help with context and references, and Robert Guralnick
for assistance with the proof of Theorem 5.3.

2. Notation and terminology. We quickly recall terminology and fix our
notation. For geometric statements, we assume throughout that we are working
over C.

Our notation for permutations will always be to express them as products of
cycles. Given σ ∈ Sd, we will say that a number k ∈ {1, . . . , d} is in the support
of σ if σ(k) 	= k.

Given a permutation σ (or conjugacy class T) of Sd, we define its index
ι(σ) as follows: if a1 ≤ a2 ≤ . . . ≤ am is the corresponding partition, then
ι(σ) :=

∑m
i=1 (ai − 1). We then say that a tuple (d, r, g, (T1, . . . , Tr)) constitutes



4 FU LIU AND BRIAN OSSERMAN

the data of a Hurwitz problem, where d ≥ 1, r ≥ 2, g ≥ 0, the Ti are conjugacy
classes in Sd, and we require 2d − 2 + 2g =

∑
i ι(Ti).

Associated to a Hurwitz problem we have the group-theoretic question of
finding all Hurwitz factorizations (σ1, . . . ,σr), where:

(i) σi ∈ Ti;
(ii) σ1 . . . σr = 1;
(iii) the σi generate a transitive subgroup of Sd.

We say that two Hurwitz factorizations are equivalent if they are related by
simultaneous conjugation by an element of Sd. We call the number of equivalence
classes of Hurwitz factorizations the Hurwitz number h(d, r, g, (T1, . . . , Tr)). See
Remark 2.2 below for discussion of some relating and conflicting notation in the
literature.

Geometrically, we also have the Hurwitz space H(d, r, g, (T1, . . . , Tr)), para-
metrizing r-tuples of marked points on P1, together with covers of degree d and
genus g, unramified away from the marked points, and with monodromy type
Ti at the ith marked point for all i. For a fixed choice of marked points, such
covers correspond to Hurwitz factorizations up to equivalence, so the degree of
H(d, r, g, (T1, . . . , Tr)) over the spaceM0,r parametrizing marked points is given
by the Hurwitz number.

We say that a Hurwitz problem is pure-cycle if each Ti consists of a single
cycle. Throughout this paper, we restrict our attention to pure-cycle Hurwitz
problems, and we replace the Ti by integers ei ≥ 2 giving the length of the cycle.
We thus have 2d − 2 + 2g =

∑
i (ei − 1) as the condition on our data.

We recall that the Artin braid group Br acts on tuples (σ1, . . . ,σr) in Sd with
σ1 . . . σr = 1, preserving the group generated by the σi. The ith generator acts by
replacing (σi,σi+1) by (σi+1,σ−1

i+1σiσi+1). The kernel of the natural map Br → Sr

is the pure braid group, which not only preserves σ1 . . . σr = 1, but sends each
σi to a conjugate of itself in the group generated by all the σi. We thus see that
the pure braid group acts on the set of Hurwitz factorizations, and it is the orbits
of this action which we will study.

Note as a consequence of the geometric definition of Hurwitz number that the
number is clearly invariant under reordering of the ei. We can also see this purely
in terms of group theory by making use of the braid group action to permute the
ei arbitrarily.

We will also be working from the point of view of linear series, which from
our point of view will always have dimension 1 and be basepoint free: in this
situation, a linear series of dimension 1 and degree d (also called a g1

d) on a
curve C is simply a map to P1 of degree d, considered up to automorphism of
the image space. We remark that the basepoint-free hypothesis will not cause us
any problems, as we will always be working with spaces of linear series with all
ramification specified.

As a simple case of the sort of analysis we will carry out in the four-point
case, we recall the answer in the case of three points:
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LEMMA 2.1. The Hurwitz number for (d, 3, 0, (e1, e2, e3)) is always 1, corre-
sponding to the factorization:

σ1 = (d − e2, d − e2 − 1, . . . , 2, 1, e3, e3 + 1, e3 + 2, . . . , d − 1, d),

σ2 = (d, d − 1, . . . , d − e2 + 2, d − e2 + 1), and

σ3 = (1, 2, . . . , e3 − 1, e3).

Proof. First, note that by transitivity and the fact that σ1 = σ−1
3 σ−1

2 , we have
that σ3 and σ2 together act nontrivially on all of {1, . . . , d}, and their actions
must therefore overlap on a subset of cardinality exactly e2 + e3− d = d + 1− e1.

To complete the proof, one observes that if a sequence of precisely m con-
secutive elements in the cycle representation of σ2 also appear in σ3, at most
m− 1 of them can remain fixed by σ2σ3. It follows that in order for σ2σ3 to be
an e1-cycle, the overlap must form a single contiguous portion of each of σ2 and
σ3, from which one easily concludes the desired statement.

Finally, we recall:

Proof of Proposition 1.1. The equivalence of (i) and (ii) is classical and quite
general: the basic idea is that the monodromy cycles of a cover depend not only on
the cover, but also on a choice of local monodromy generators of the fundamental
group of the base; all such choices of generators are related by braid operations,
and each braid operation can be achieved as monodromy of the Hurwitz space by
moving the marked points of the base around one another. For a slightly different
exposition, see [20, Prop. 10.14 (a)]; note that the situation is slightly different
because he considers Hurwitz spaces with unordered branch points and full braid
orbits, but the argument is the same in our case of ordered branch points and
pure braid orbits.

Similarly, the equivalence of (iii) and (iv) is equally basic: the space G1
d is

obtained from the space MR simply by modding out by the (free) action of the
automorphism group of the base P1, so MR is a PGL2-bundle over G1

d, and one
space is irreducible if and only if the other is.

Next, because we have restricted to Hurwitz spaces in which there is a single
ramified point over each branch point, the comparison of MR and H(d, r, 0,�e)
is almost equally straightforward. First suppose r ≥ 3. If we denote by M̂R the
open subscheme of MR for which the map f sends the marked ramification points
to distinct points, then because r ≥ 3, we have that M̂R is a PGL2-bundle over
H(d, r, 0,�e), so one is irreducible if and only if the other is. But then an easy
deformation-theory argument shows that any component of MR dominates the
(P1)r parametrizing the branch points of the map f [15, Cor. 3.2], so we see
that M̂R is dense in MR, completing the desired equivalences for irreducibility.
Finally, if r = 2, the only maps are, up to automorphism, x �→ xd, so it is easy to
see that both MR and H(d, r, 0,�e) are irreducible.
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Remark 2.2. Our terminology of Hurwitz problem (and more specifically, the
associated set of Hurwitz factorizations) is closely related to the more standard
terminology “Nielsen class”, for which one also specifies a subgroup G which the
σi must generate, and assigns the Ti as conjugacy classes within that subgroup.

The Nielsen class is frequently better because it gives a finer combinatorial
invariant: the Hurwitz factorizations for a given Hurwitz problem are a disjoint
union over different Nielsen classes, and likewise the Hurwitz space is a disjoint
union over spaces associated to different Nielsen classes. Our main theorem
immediately implies that for the cases we study, a Hurwitz problem consists of
only a single Neilsen class. See also Theorem 5.3 below for a direct proof of this
fact.

One has to be slightly careful in comparing statements, since the Nielsen
class terminology also allows for different equivalence relations on the Hurwitz
factorizations (for instance, working up to inner automorphism of G).

We also remark on our terminology of Hurwitz number. First, in [4] the term
“Hurwitz number” is used to describe the number of components of the Hurwitz
space, while what we call the Hurwitz number is called the “degree”. Second,
in many other papers, a “stacky” definition of Hurwitz number is used in which
rather than working up to equivalence, one counts all Hurwitz factorizations, and
divides by d!. This is the same as counting covers divided by the number of
their automorphisms, and reflects the fact that in general, a Hurwitz space might
be a stack with nontrivial stabilizer groups. However, in the pure-cycle genus-
0 case, this will not affect the answer as long as r ≥ 3, since one can check
using Theorem 5.3 below that Sd always acts without fixed points on the set of
Hurwitz factorizations, which implies that our covers are automorphism-free and
the Hurwitz space is in fact a scheme.

3. Reduction to four points. The goal of this section is to use the machin-
ery of limit linear series to prove:

PROPOSITION 3.1. To prove Theorem 1.2 in general, it is enough to give a proof
in the case that r = 4.

In order to use a degeneration argument for Proposition 3.1, the key fact
which we need (and which is lacking in the higher-genus case) is:

PROPOSITION 3.2. Every component of the space G1
d of Proposition 1.1 maps

dominantly under the forgetful map toM0,r.

Proof. Indeed, we know [1, Thm. 2.3] that if we fix ramification points, we
have only finitely many g1

d’s with the prescribed ramification, and that conversely,
if we move the branch points, our rational function can always be deformed [15,
Cor. 3.2]; the statement then follows by a dimension count, as in the proof of
ibid.
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We will make essential use of the r = 1 case of limit linear series, developed
by Eisenbud and Harris in [2]. We briefly review the critical points of their
theory in this case, where it becomes considerably simpler. Suppose that we have
a family C of curves, with smooth generic fiber, but with some nodal fibers. We
assume that all nodal fibers are of compact type, i.e., that their dual graph is a
tree. Eisenbud and Harris construct a space over all of C which correspond to
usual g1

d’s on smooth fibers of C, but correspond to limit linear series on the
nodal fibers; by abuse of notation, we write g1

d to mean also limit linear series.
Suppose that C is a nodal fiber with (necessarily smooth) components C1, . . . , Cm.
In our case of r = 1, a (refined) limit linear series on C may be expressed as
an m-tuple of aspects on each Ci, where an aspect is a g1

di
with di ≤ d, and

the sole compatibility condition is that if Ci and Cj meet at a node P, then the
ramification index at P of the aspects on Ci and Cj should be the same. Given
r smooth sections Pi of C, the Eisenbud-Harris construction also works to give
spaces of g1

d’s with at least a specified amount of ramification at the Pi (in fact,
limit linear series should in general allow for base points away from the nodes,
but since we will work with the case that all ramification is specified, this won’t
arise).

We review the situation further in the case g = 0, with all ramification speci-
fied. This is studied in [14, Thm. 2.4]; there, the families considered involve only
breaking off one component at a time, but our assertions here easily follow by
the same arguments. For the rest of the section, we fix our degenerate curve:

Situation 3.3. The curve C0 is the totally degenerate curve given by a nodal
chain of r−2 copies of P1, with P1, P2 on the first component, Pi on the (i−1)st
component for i < 2 < r − 1, and Pr−1, Pr on the last component.

We consider families C near a fiber isomorphic to the specified C0. Because
all ramification is specified, the space of g1

d’s is finite over C, and is in fact finite
étale in a neighborhood of C0. Furthermore, a g1

d on C0 is uniquely described by
a collection of ramification indices (e′2, . . . , e′r−2) at the nodes, which are required
to satisfy a collection of triangle inequalities and a parity condition. Specifically,
if we consider any consecutive triple e, e′, e′′ starting with an odd-indexed term
in the sequence

e1, e2, e′2, e3, . . . , er−2, e′r−2, er−1, er,

we need to have e ≤ e′ + e′′, e′ ≤ e + e′′, and e′′ ≤ e + e′, and we need e + e′ + e′′

to be odd.
For later use, we note that the second condition implies immediately that the

triangle inequalities are in fact always strict, and also that the allowed parity of
e′2, . . . , e′r−2 is fixed by the ei.

With these tools in hand, we can now complete our geometric argument.
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Proof of Proposition 3.1. We fix the totally degenerate curve C0 as in the
above situation, and work with a local universal family C of genus-0 curves in
a neighborhood of C0, denoting the generic curve of this family (which is also
the generic curve of M0,r) by Cη. It is enough to show that the relative G1

d
space (with the desired ramification at the marked points) is irreducible over the
family C, since by the previous proposition, every component of the global G1

d
space meets the generic curve Cη. By the same token, it is enough to show that
any two g1

d’s on the geometric generic fiber C̄η lie on the same component of
G1

d. Furthermore, because the space of g1
d’s is reduced over C0, we have cannot

have two components of G1
d meet over C0, so over our family C, irreducible

components of G1
d are the same as connected components.

Accordingly, suppose we are given two g1
d’s on C̄η. By the above discus-

sion, these can be specialized to g1
d’s on C0, which are described by the data

of ramification indices (e′2, . . . , e′r−2) and (e′′2 , . . . , e′′r−2) respectively. We set the
convention that e′1 = e′′1 := e1, and e′r−1 = e′′r−1 := er. Our claim is as follows: if
we assume the r = 4 case of Theorem 1.2, then any two g1

d’s on C0 such that
e′i = e′′i for all but one i necessarily lie on the same component of G1

d.
Indeed, if we fix a node of C0 corresponding to e′i (i.e., the (i − 1)st node),

we can restrict the family C to the closed subfamily Ci in which only the chosen
node of C0 is allowed to be smoothed, giving a smooth component containing
the two marked points Pi and Pi+1, and the (i− 2)nd and ith nodes (unless i = 2
or r − 2, in which case P1 or Pr takes the place of the (i − 2)nd or ith node
respectively). The other components remain fixed, so we may consider Ci to be
obtained from the universal family over M0,4 by localizing around a degenerate
curve, and gluing appropriate chains of P1’s at the first and fourth marked points;
in particular, the base of Ci is naturally a local scheme U of M0,4 at a point
corresponding to a degenerate curve. If we write C0,4 for the universal curve over
U, the point is to relate the G1

d spaces associated to C0,4 and Ci.
Specifically, suppose we have chosen indices e′j = e′′j for all j 	= i. For the

sake of clarity, we denote by G1
d(C) our original space of g1

d’s on C, and by
G1

d(Ci) and G1
d(C0,4) the spaces of g1

d’s on Ci and C0,4. For the first two spaces,
we impose ramification ei at each Pi, so that G1

d(Ci) is simply the base change
of G1

d(C), while for G1
d(C0,4) we impose ramification e′i−1, ei, ei+1, e′i+1 at the four

marked points. Now, if we consider the closed subscheme Zi of G1
d(Ci) which

corresponds to limit g1
d’s with ramification indices e′j at the nodes (for j 	= i), the

limit g1
d’s are uniquely determined except on the component with four marked

points, so Zi is isomorphic to the space G1
d(C0,4) which we have described. Thus

if we assume Theorem 1.2 in the case r = 4, we see that the subscheme Zi of
G1

d(Ci) is irreducible, so that any two g1
d’s on C0 for which e′i = e′′i for all but one

i lie on the same connected component of G1
d(Ci), and hence of G1

d(C).
This proves the claim, and since every limit g1

d on C0 can be smoothed
to a g1

d on C̄η, the following numerical lemma completes the proof of our
proposition.
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LEMMA 3.4. Let C0 be a totally degenerate marked curve of genus 0, and sup-
pose we are given two g1

d’s with ramification indices ei at the marked points, and
classified by ramification indices (e′2, . . . , e′r−2) and (e′′2 , . . . , e′′r−2) respectively at
the nodes. Then it is possible to modify (e′2, . . . , e′r−2) into (e′′2 , . . . , e′′r−2), by a se-
quence of changes affecting only one index at a time, and with every intermediate
set of indices corresponding to a valid g1

d on C0.

Proof. Suppose we have a g1
d on C0 specified by the set (e′2, . . . , e′r−2). Since

the allowed parity of each of e′2, . . . , e′r−2 is fixed by the ei, as long as we change
them by 2 at a time, we do not need to worry about violating the parity condition.
It is thus enough to show that if (e′2, . . . , e′r−2) and (e′′2 , . . . , e′′r−2) are distinct, there
is always some i with e′i 	= e′′i and for which we can increase e′i or e′′i to make it
closer to the other without violating any triangle inequalities. We prove this by
induction.

We will induct on the following statement: suppose we are given i such
that e′′i − e′i ≥ e′′i−1 − e′i−1 and e′i + 2 ≤ e′i−1 + ei. Then either we can increase
e′i, or we must have e′′i+1 − e′i+1 ≥ e′′i − e′i and e′i+1 + 2 ≤ e′i + ei+1. Indeed, if
we cannot increase e′i, the only triangle inequalities that could be violated are
e′i + 2 ≤ e′i−1 + ei or e′i + 2 ≤ ei+1 + e′i+1. But the first one is satisfied by hypothesis,
so the only possibility is that e′i + 2 > ei+1 + e′i+1, in which case we see we must
have e′i + 1 = ei+1 + e′i+1. But we then see that

e′′i+1 − e′i+1 = e′′i+1 + ei+1 − e′i − 1 ≥ e′′i − e′i

by the triangle inequality. Furthermore, e′i+1 + 2 ≤ e′i + ei+1 because ei+1 ≥ 2.
Now suppose that i0 is the smallest number with e′i0 	= e′′i0 . Without loss

of generality, we may assume that e′i0 < e′′i0 . But we see that this satisfies the
hypotheses of our inductive statement: the first inequality is clear since e′′i0−1 =
e′i0−1, while the second follows because we have e′i0 + 2 ≤ e′′i0 ≤ e′′i0−1 + ei0 =
e′i0−1 + ei0 . But by induction, we see that we must eventually be able to increment
one of the e′i for i ≥ i0, since when i = r − 2, we have e′′r−1 = e′r−1 = er. This
proves the lemma.

4. The case of four points. In this section, we study the case of four points
from the group-theoretic point of view. Our setup throughout this section is as
follows:

Situation 4.1. We are given d > 0, and �e := (e1, e2, e3, e4), with 2d − 2 =∑
i (ei − 1), and 2 ≤ e1 ≤ e2 ≤ e3 ≤ e4 ≤ d.

We observe for later use that in our situation, we have e1 + e3 ≤ d + 1,
e2 + e4 ≥ d + 1, e1 + e2 ≤ d + 1, and e3 + e4 ≥ d + 1. The first two inequalities
follow from e1 + e3 ≤ e2 + e4 together with e1 + e2 + e3 + e4 = 2d + 2, while the
second two follow by comparing with the first two.
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Throughout this section, we will write sequences of the form i, i+1, . . . , j (and
similarly for descending sequences). If j ≥ i, the meaning is clear: an ascending
sequence of length j− i+1. However, without further comment we will also allow
j = i− 1, in which case the meaning will be the empty sequence (still of length
j− i + 1).

Our main result is the following:

THEOREM 4.2. In Situation 4.1, the Hurwitz number h(d, 4, 0,�e) is given by
min{ei(d + 1− ei)}i.

Moreover, the possible Hurwitz factorizations (σ1,σ2,σ3,σ4) are classified ex-
plicitly as follows:

(i) if σ3σ4 is trivial or a single cycle, then we have

σ1 = (d, d − 1, . . . , e3 + e4 + 1− k,

σ−(d+2−k−e1)(�),σ−(d+3−k−e1)(�), . . . ,σ−(e3+e4+1−2k)(�) = �),

σ2 = (e3 + e4 + 1−k, e3 + e4 + 2−k, . . . , d−1, d, �,σ−1(�), . . . ,σ−(d+1−k−e1)(�)),

σ3 = (k, k − 1, . . . , 2, 1, e4 + 1, e4 + 2, . . . , e3 + e4 − k),

σ4 = (1, . . . , e4),

where we allow any k with e3 + e4 − d ≤ k ≤ e3 and k ≤ d + 1 − e2, we define
σ := (k, k + 1, . . . , e3 + e4 − k) = σ3σ4, and for a given k, we allow � to vary in the
range k ≤ � ≤ e3 + e4 − k.

(ii) if σ3σ4 is a product of two disjoint cycles, then we have

σ1 = (m + e1 − 1, m + e1 − 2, . . . , m + 1, m),

σ2 = (d, d − 1, . . . , m + e1, m + d + k − e3 − e4, m + d − 1 + k − e3 − e4, . . . , k),

σ3 = (k, k − 1, . . . , 1, e4 + 1, e4 + 2, . . . , m + e1 − 1,

m, m− 1, . . . , m + d + 1 + k − e3 − e4, m + e1, m + e1 + 1, . . . , d),

σ4 = (1, . . . , e4),

where we allow any k with 1 ≤ k ≤ e3 + e4 − d− 1, and any m with e4 − e1 + 1 ≤
m ≤ d + 1− e1 and m ≤ e4.

Before giving the proof, we give a number of simple technical lemmas and
their consequences; although each result individually is quite easy and presumably
well-known, we include them for the sake of staying as self-contained as possible.

We begin by simplifying the transitivity condition on Hurwitz factorizations
in our situation.

LEMMA 4.3. Suppose that σ1,σ2,σ3,σ4 ∈ Sd are cycles of length e1, e2, e3, e4,
with trivial product. Then the following are equivalent:

(a) the σi form a Hurwitz factorization for (d, 4, 0,�e);
(b) every number in {1, . . . , d} is in the support of at least one of the σi;
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(c) every number in {1, . . . , d} is in the support of exactly two of the σi, except
that either there is some k which is in the support of every σi, or there exist k 	= �,
with each in the support of three of the σi.

Proof. It is clear that the transitivity condition for (a) implies (b). To see that
(b) implies (c), the key point is that the identity 2d − 2 =

∑
i (ei − 1) leaves

relatively little flexibility for the σi. Specifically, if every number in {1, . . . , d}
is in the support of at least one cycle, it must be in the support of at least two,
as otherwise the product could not be trivial. But we have

∑
i ei = 2d + 2, and 2d

of the numbers in the support of the σi are accounted for, leaving only 2 which
could be in the support of more than two cycles. We conclude (c).

Finally, to see that (c) implies (a), we need only check transitivity. Since
every number is in the support of at least two σi, we cannot have any σi disjoint
from all the others. Thus, the only way they could fail to generate a transitive
subgroup would be if two of the σi were disjoint from the other two. But this
cannot occur, as the inequalities e3 + e4 ≥ d + 1 and e2 + e4 ≥ d + 1 imply that σ4

cannot be disjoint from either of σ2 or σ3.

We next pursue a detailed study of the relationship between pairs of cycles
and their products.

LEMMA 4.4. Suppose σ1,σ2 ∈ Sd are nondisjoint cycles in Sd, and let σ be any
cycle in the decomposition of σ1σ2 into disjoint cycles. Then there exists an element
of {1, . . . , d} in the support of σ, σ1, and σ2.

Proof. This is routine: if σ consisted entirely of numbers in the support of
σ1 but not σ2, it would have to be equal to σ1, contradicting the nondisjointness
hypothesis, and similarly with the σi reversed. One then verifies that to switch
from elements in the support of σ1 to elements in the support of σ2 requires an
element of σ in the support of both.

LEMMA 4.5. Let σ,σ′ be nondisjoint cycles, with σσ′ 	= 1. Then there exists a
unique expression (up to cycling of indices) of σ′ as (w′1, v ′1, . . . , w′m, v ′m) and σ as
(w1, v1, w2, v2, . . . , wm, vm) where the w′i, v ′i and wi, vi are sequences of numbers,
satisfying:

(i) the wi and w′i are all nonempty, but the vi and v ′i may be empty;
(ii) each v ′i consists of numbers not in the support of σ;
(iii) each vi consists of numbers not in the support of σ′;
(iv) there exists a permutation τ ∈ Sm such that each wi is the inverse of w′τ (i)

(i.e., the same sequence in reversed order);
(v) if for all i we set ki to be the first number in wi, the set of ki is precisely the

set of numbers in the support of all three of σ,σ′, and σσ′.

Proof. By Lemma 4.4, there is some number in the support of σ, of σ′ and
of σσ′; we begin by designating one such number to be k1. In order to be able
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to write σ in the desired form, the order of the remaining ki are then uniquely
determined. Furthermore, we see that each wi must consist of the longest word
in σ which starts with ki, contains only numbers also in the support of σ′, and
does not contain kj for j 	= i. This uniquely determines each wi, and the vi are
what remain. We can then do the same for the w′i and v ′i , except that the ki could
appear in a different order in σ′, giving us the permutation τ . It remains to check
that these expressions have the desired properties, specifically (ii), (iii), and (iv).

Note that if n 	= ki for any i is any number in the support of σ and σ′, since n
isn’t in the support of σσ′, then σ′(n) = σ−1(n), so we see that σ′(n) must also be
in the support of σ, immediately prior to n in the cycle representation. Applying
this inductively gives that all such n appear in the wi in σ and in the w′i in σ′,
and that each w′τ (i) is inverse to wi, as desired.

The following corollary is quite special to the case of at most two repetitions.

COROLLARY 4.6. Let σ,σ′ be cycles, and write S ⊆ {1, . . . , d} for the intersec-
tion of the supports of σ,σ′ and σσ′. Suppose that either:

(I) σ = σ3, σ′ = σ4, (σ1,σ2,σ3,σ4) a Hurwitz factorization for (d, 4, 0,�e);
(II) σ and σ′ are not disjoint, and #S ≤ 2.

Then the number of disjoint cycles in σσ′ is equal to #S and is at most 2, and there
is exactly one element of S in the support of each disjoint cycle.

Proof. We first observe that (I) implies (II). Indeed, σ3 and σ4 cannot be
disjoint since e3 + e4 ≥ d + 1, and we have #S ≤ 2 by Lemma 4.3(c), since any k
which occurs in the support of σ3σ4 must also occur in the support of σ1 or σ2

because of the trivial-product condition.
We next argue that (II) implies the conclusion of the corollary. Lemma 4.4

immediately handles the case #S ≤ 1. For #S = 2, we apply the above lemma,
noting first that in this case we can always cycle indices so that τ = 1, i.e., each
w′i is the inverse of wi. Then note that the formula

(w1, v1, w2, v2)(w′1, v ′1, w′2, v ′2) = (k1, v ′1, v2)(k2, v ′2, v1)

holds regardless of whether the vi and v ′i have nonzero length; since k1 and k2 are
assumed to be in the support of σσ′, we see that it must consist of two disjoint
cycles.

We are now ready to give the proof of Theorem 4.2. For the sake of clarity,
we break the proof into four propositions.

PROPOSITION 4.7. Each of the possibilities enumerated in Theorem 4.2 gives a
valid Hurwitz factorization, and σ3σ4 is in the asserted form (and in particular,
consists of the asserted number of cycles).

Proof. The main technicality is to check that the individual cycles themselves
make sense. This involves checking three points: first, that all the elements listed
lie in {1, . . . , d}; second, that each word has nonnegative length; and third, that
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there is no overlap between the words in a given cycle. In fact, we first see that all
words have nonnegative length, which then simplifies checking that their ranges
are appropriate.

Before that, we observe that σ = (k, k + 1, . . . , e3 + e4 − k) makes sense: the
length is at least 1, since we have 2k ≤ 2e3 ≤ e3 + e4; and we check both k ≥ 1
and e3+e4−k ≤ d using the inequality e3+e4−d ≤ k (together with e3+e4 ≥ d+1
for the first).

In general, we allow sequences to have length 0, except those containing k,
�, or m. In case (i), for σ1 we require that d ≥ e3 + e4 − k and e3 + e4 + 1− 2k ≥
d+2−k−e1, which are equivalent to k ≥ e3+e4−d and k ≤ d+1−e2 respectively.
For σ2, we need e3 + e4 − k ≤ d and d + 1− k − e1 ≥ 0, giving k ≥ e3 + e4 − d
and k ≤ d + 1− e1 respectively. Since d + 1− e2 ≤ d + 1− e1, the last inequality
will also be satisfied. Finally, for σ3 we need k ≥ 1 and e3 + e4− k ≥ e4; the first
is satisfied since e3 + e4 − d ≥ 1, while the second is simply k ≤ e3. Case (ii)
is similar, with the only inequality appearing other than those imposed directly
being m ≥ e3 + e4 − d. However, this is okay, since we have m ≥ e4 − e1 + 1,
and the inequality e1 + e3 ≤ d + 1 implies that e3 + e4− d ≤ e4− e1 + 1. Thus, the
ranges provided guarantee that the cycles make sense, and are in fact equivalent
to having the lengths of all words containing k, �, or m be at least 1, and the
lengths of the remaining words being at least 0.

We next address the first and third points simultaneously. In case (i), every-
thing follows easily from the ranges imposed for k: for σ4 there is nothing to
check; for σ3 we check that k < e4 + 1 and e3 + e4 − k ≤ d; and for σ2 and
σ1, everything is immediate, since the terms involving σ are automatically in the
correct range, and the sequence in σ1 involving σ could not wrap around without
the sequence in σ2 having negative length, and vice versa.

Similarly, in case (ii), the only points requiring any nonimmediate checking
are: for σ3, that k < m + d + 1 + k − e3 − e4, and m < e4 + 1, with the former
following from e1 +e3 ≤ d +1; for σ2, that m+d +k−e3−e4 < m+e1; and for σ1,
that m ≥ 1. Thus, all the cycles consist of nonoverlapping entries in {1, . . . , d}.

We can then check directly that the cycles are of the correct length and have
trivial product, as well as that σ = σ3σ4. Finally, using that b) implies a) in
Lemma 4.3 makes it easy to check that the cycles generate transitive subgroups
of Sd, so all the possibilities listed are valid Hurwitz factorizations.

It remains only to note that in case (i), we have already written σ explicitly,
so we see that σ3σ4 is in fact trivial or a single cycle, while in case (ii), we
check that m > m + d + k − e3 − e4, so that σ1 is disjoint from σ2, and since
σ1σ2σ3σ4 = 1, it follows that σ3σ4 is a product of two disjoint cycles.

PROPOSITION 4.8. No two possibilities enumerated in Theorem 4.2 are
equivalent.

Proof. Cases (i) and (ii) of Theorem 4.2 are clearly invariant under relabeling.
In case (i), we see that k is determined as the number of elements in the support of
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both σ3 and σ4, so is invariant under relabeling. If σ = 1 (i.e., if k = e3 + e4− k),
we have � = k is the only possibility. Given k with σ 	= 1, we see that � is
determined as the unique number (in the allowed range) such that σ�−k(k) is in
the support of σ1 and σ2 (and necessarily σ), so two possibilities with different
� cannot be equivalent.

In case (ii), the size of the intersection of the supports of σ1 and σ4 is
e4 + 1 − m, so m is relabeling-invariant. The overlap between the supports of
σ3 and σ4 consists of two contiguous words, and k is determined as the length
of the word with nonempty overlap with σ2. Hence, no two possibilities are
equivalent.

PROPOSITION 4.9. Every Hurwitz factorization is equivalent to one of the pos-
sibilities enumerated in Theorem 4.2.

Proof. We begin by noting that by Corollary 4.6, we must have that σ3σ4

consists of 0, 1, or 2 disjoint cycles. Furthermore, if σ3σ4 = 1, then we have
σ3 = σ−1

4 , and σ1 = σ−1
2 , and e1 = e2 = d + 1 − e3 = d + 1 − e4, so it is easy

to check that the only possibility is the k = � = e3 = e4 case of (i). We can thus
assume that σ3σ4 	= 1.

The first case we consider is that σ = σ3σ4 is a single cycle, or, equivalently
by Corollary 4.6, that there is a single number k′ ∈ {1, . . . , d} which is in the
support of σ3,σ4, and in σ = σ3σ4. Let k be the number of elements in the
support of both σ3 and σ4. We may then relabel so that σ4 = (1, . . . , e4), and
k′ gets mapped to k; i.e, so that the unique number in the support of σ3,σ4,
and σ is k. Applying Lemma 4.5 to σ3 and σ4 with the only ki being k gives
us that σ3 is necessarily of the form (k, k − 1, . . . , 2, 1, a1, . . . , ae3−k) for some
ai ∈ {e4 + 1, . . . , d}; relabeling the latter range allows us to put σ3 in the desired
form.

Next, note that by Lemma 4.3, there must be a unique number � in the support
of σ1, of σ2, and of σ. We then have also by Lemma 4.3 that all the numbers
{e3+e4−k+1, . . . , d} must be in the support of σ2, and we claim that they must be
in a contiguous word, and followed immediately by �,σ−1(�), . . . ,σ−(d+1−k−e1)(�).
The claim is checked by applying Lemma 4.5 to σ2 and σ, using that σ2σ = σ−1

1 ,
so that the only ki is k1 = �. The claim implies that we are free to reorder
{e3 + e4 − k + 1, . . . , d} so that they appear in order, and furthermore so that
σ2(d) = �. Hence, we have put σ2 in the desired form, and then σ1 is determined
by σ1σ2σ = 1.

We next consider the case that σ is a product of two disjoint cycles, which by
Corollary 4.6 is equivalent to having two numbers k′, k′′ ∈ {1, . . . , d} which are
each in the support of σ3,σ4, and in σ := σ3σ4. Then k′ is in one of the disjoint
cycles of σ, and k′′ is in the other. By Lemma 4.3, we see that since we already
have k′, k′′ occurring in σ3,σ4 and σ (hence in either σ1 or σ2), we cannot have
any numbers occurring in σ1,σ2 and σ. By Corollary 4.6 (II), we see that σ1 and
σ2 must be disjoint, and since σ1σ2 = σ−1, we see that k′ is in the support of one,
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and k′′ is in the support of the other; without loss of generality, we may assume
that k′ is in the support of σ1 and k′′ in σ2. We also note that this implies that
each of {1, . . . , d} is in the support of either σ3 or σ4.

We once again normalize so that σ4 = (1, . . . , e4), and we can further require
that if we write σ3 = (w1, v1, w2, v2) and σ4 = (w′1, v ′1, w′2, v ′2) as in Lemma 4.5,
we can set w′1 = (1, 2, . . . , k), with k being the corresponding relabeling of k′′,
i.e., the unique number in the support of σ3,σ4, and σ2. We then have w1 in the
desired form, and w2 will likewise be in the desired form for some m, which will
necessarily be the unique number in the support of σ3,σ4, and σ1. Relabelling
e4 + 1, . . . , d as necessary, we can place v1 and v2, hence σ3 in the desired form,
and σ1 and σ2 are then uniquely determined as disjoint cycles with σ1σ2σ = 1,
and containing m and k respectively.

This then completes the proof of the claim that every Hurwitz factorization
is equivalent to one of the enumerated possibilities.

PROPOSITION 4.10. The number of possibilities enumerated in Theorem 4.2 is
equal to min{ei(d + 1− ei)}i.

Proof. The formula min{ei(d + 1 − ei)}i falls into two situations: if e4 ≥
d + 1− e1, then it is equal to e4(d + 1− e4), while if e4 ≤ d + 1− e1, then it gives
e1(d + 1− e1).

We first consider the situation that e4 ≥ d+1−e1. Here, because e4+e1 ≥ d+1,
we have e2 + e3 ≤ d + 1, so e3 ≤ d + 1− e2, and in case (i) of Theorem 4.2 the
inequality e3 + e4 − d ≤ k ≤ e3 automatically implies k ≤ d + 1 − e2. We thus
have

e3∑
k=e3+e4−d

e3+e4−k∑
�=k

1 =
e3∑

k=e3+e4−d

(e3 + e4 − 2k + 1) = (d + 1− e3)(d + 1− e4)

possibilities from case (i). Similarly, we have d + 1 − e1 ≤ e4 so e4 − e1 + 1 ≤
m ≤ d + 1− e1 implies that m ≤ e4. Thus, our ranges are 1 ≤ k ≤ e3 + e4− d− 1
and e4−e1 + 1 ≤ m ≤ d + 1−e1, yielding (e3 + e4−d−1)(d + 1−e4) possibilities
in case (ii), and giving us the desired e4(d + 1 − e4) possibilities in total (note
that e3 + e4− d− 1 and d + 1− e4 are always nonnegative, so these formulas are
always valid).

The situation that e4 ≤ d + 1− e1 proceeds similarly, with e1e2 possibilities
arising from case (i), and e1(d + 1− e1− e2) possibilities arising from case (ii).

Combining the statements of the four propositions, we immediately conclude
Theorem 4.2.

From the theorem, we deduce quite directly:

COROLLARY 4.11. In Situation 4.1, the Hurwitz factorizations for (d, 4, 0,�e) all
lie in a single pure braid orbit.
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Proof. We first see that all the factorizations in case (i) of the theorem are in
a single pure braid orbit, and then show that any factorization in case (ii) is in
the same braid orbit as some factorization in case (i).

Suppose we start with (σ1,σ2,σ3,σ4) corresponding to a given k, � of case
(i). Our first claim is that if we replace (σ1,σ2) by (σ−1

2 σ1σ2,σ−1
2 σ−1

1 σ2σ1σ2 =
σσ2σ

−1), we stay in case (i), leaving k fixed, while replacing � by σ(�). The first
part is clear, while the assertion on � is checked by direct computation, using
that since σ3,σ4 remain fixed, it is enough to see what happens to σ2. Thus, for
a given k, every possible � is in the same braid orbit.

To analyze the Hurwitz factorizations for different k, for each k we set � = k,
where we have σ1 = (d, d − 1, . . . , e3 + e4 + 1 − k, d + 1 − e2, d − e2, . . . , k) and
hence

σ2σ3 = σ−1
1 σ−1

4 = (k, k − 1, . . . , 1, e4, e4 − 1, . . . , d + 2− e2,

e3 + e4 + 1− k, e3 + e4 + 2− k, . . . , d).

We check that if we replace (σ2,σ3) by (σ′2,σ′3) := (σ−1
3 σ2σ3,σ−1

3 σ−1
2 σ3σ2σ3),

then as long as k is not minimal, we remain in case (i), but replace k by k − 1.
Here, a relabeling is in principle necessary, but we can instead check that σ′3σ4

is still a single cycle, so that we remain in case (i), and that the supports of σ′3
and σ4 overlap in k− 1 elements. We therefore see that every possibility in (i) is
always in a single pure braid orbit.

Finally, we suppose we have (σ1,σ2,σ3,σ4) corresponding to a given k, m
of case (ii). In this case, we again replace (σ2,σ3) by (σ′2 = σ−1

3 σ2σ3,σ′3 =
σ−1

3 σ−1
2 σ3σ2σ3), and note that since σ1,σ4 remain unchanged, σ′2 determines σ′3.

One then computes that as long as k < e3 +e4−d−1, σ′2 is still a possibility from
case (ii), with m the same, but k + 1 instead of k. Finally, if k = e3 + e4 − d − 1,
one checks that applying the same pure braid operation, we move into case (i),
with k = e3 + e4 + d (and � = m). Thus, every possibility in case (ii) is in the same
pure braid orbit as some possibility in case (i), and we get that everything is in
the same pure braid orbit.

Using Proposition 1.1, and Proposition 3.1, we see immediately that Corollary
4.11 implies Theorem 1.2, and we are done.

5. Loose ends. We begin with a further remark in the case of four points.
The Hurwitz number min{ei(d+1−ei)}i computes the number of rational functions
P

1 → P
1 with four fixed branch points on the target. If instead we look at fixed

ramification points on the source, we find that the number is min{ei, d+1−ei}i [14,
Rem. 5.9]. Despite the close geometric relationship between these two numbers,
there is no a priori reason for there to be any numerical relationship at all, so
their similarity is striking. We note further that with the exception of the case
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that we have ei = d for some d, both formulas are symmetric with respect to
replacing the ei by d + 1− ei; this motivates us to ask:

Question 5.1. Is there a natural involution on the set of rational functions of
degree d having exactly four ramification points, which replaces the ramification
indices ei by d + 1− ei, and holds both the ramification and branch points fixed?

A more obvious question left unanswered by our analysis is:

Question 5.2. Is there a closed form for the genus-0 pure-cycle Hurwitz num-
bers for any number of branch points?

Next, we observe that it is a consequence of Theorem 1.2 that if we fix d, r
and �e, all possible Hurwitz factorizations are in a single Nielsen class, i.e., they
generate the same group, and are in the same conjugacy classes within that group.
However, with some nontrivial group theory and sufficient perseverance, one can
already see this quite directly:

THEOREM 5.3. Given d, r and�e = (e1, . . . , er) with 2d−2 =
∑

i (ei−1), and all
ei ≥ 2, suppose we have (σ1, . . . ,σr) and (σ′1, . . . ,σ′r) two Hurwitz factorizations
for (d, r, 0,�e), generating groups G, G′ ⊆ Sd. Then there exists a simultaneous
conjugation in Sd making G′ = G, and each σi conjugate to σ′i inside G. That is,
any two Hurwitz factorizations lie in the same Nielsen class.

In fact, if r = 2, we have G isomorphic to the cyclic group Cd. If r = 3 with
(e1, e2, e3) = (4, 4, 5), we have G ∼= S5, imbedded as a doubly transitive subgroup
of S6. Otherwise, we always have G = Sd or G = Ad depending on the parity of
the ei.

Proof. The case that r = 2 is clear, as we must have e1 = e2 = d.
For r = 3, we note that the first assertion is clear, since the Hurwitz number

is equal to 1 by Lemma 2.1.
For r > 3, we reduce the first assertion to the second. In the case that G = Sd,

this is trivial, while in the case that G = Ad, we need only observe that since
2d − 2 =

∑
i (ei − 1), and all ei ≥ 3, we can have at most one cycle of order

greater than d − 2. We can always fix this cycle by simultaneous conjugation in
Sd, and then any cycles of given length less than or equal to d − 2 are in the
same conjugacy class in Ad.

For the second assertion, we begin by arguing that with r > 2, we must have
G primitive, i.e., that there is no nontrivial partition of {1, . . . , d} into blocks on
which the action of G is well-defined. Indeed, if there were such a partition, since
G is transitive the blocks would all have to have the same size m, for some m|d.
We would then necessarily have each σi either of size a multiple of m, acting as a
e′i := ei

m -cycle σ′i on d′ := d
m blocks of size m, or of size strictly less than m, acting

trivially on the blocks. Say we have s of the latter; without loss of generality, we
may assume that e1, . . . , es < m, and es+1, . . . , er ≥ m. Then σ′s+1, . . . ,σ′r give a
Hurwitz factorization in Sd′ , so we must have 2d′ − 2 ≤ ∑r

i=s+1 (e′i − 1). On the
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other hand, we compute that since 2d−2 =
∑

i (ei−1), we have 2d+r−2 =
∑

i ei,
so

2
d
m

+
r − 2

m
−

s∑
i=1

ei

m
=

r∑
i=s+1

ei

m
=

r∑
i=s+1

e′i,

and so 2d′ − 2− δ =
∑r

i=s+1 (e′i − 1), where

δ =
s∑

i=1

ei

m
− s + r−2− r − 2

m
≥ 2s

m
− s + r−2− r − 2

m
=

(m− 1)(r − s− 2)
m

+
s
m

,

so we must have (m−1)(r−s−2)
m + s

m ≤ 0. Since the σ′i act transitively on d′ elements,
and have trivial product, there must be at least 2 of them which are nontrivial,
so that r − s − 2 ≥ 0. Since m > 1, we see that δ ≥ 0, and we can have δ = 0
only if r − s − 2 = s = 0, i.e., r = 2. Thus, with our hypothesis that r > 2, we
must have δ > 0, a contradiction.

We note that in the case that d ≤ 3, the only transitive subgroups are Ad and
Sd, so there is nothing to prove. In the case d = 4, one checks directly that there
is no primitive subgroup other than S4 and A4, so we need only consider the case
d ≥ 5.

Now, we wish to apply the theorem of Williamson [21] stating that if a
primitive subgroup of Sd contains a cycle of order e, with e ≤ (d − e)!, then
it must be either Ad or Sd. Since we have 2d − 2 =

∑
i (ei − 1), we see that

we must have ei ≤ � 2d−2
r + 1� for some i. One then computes directly that

Williamson’s theorem gives the desired result unless we have r = 3, d ≤ 10,
or r = 4, d ≤ 5. More specifically, the only cases falling outside Williamson’s
theorem are r = 3 with (e1, e2, e3) = (3, 4, 4), (4, 4, 5), (5, 5, 5), (7, 7, 7) or r = 4
with (e1, e2, e3, e4) = (3, 3, 3, 3). In these cases, one can check directly that the
group is Ad or Sd, as appropriate, except in the (4, 4, 5) case, where one can
compute the group explicitly, checking that it is doubly transitive and has order
120, which is well-known to determine it uniquely.

Our result is sharp in the sense that if one drops either the pure-cycle or
the genus-0 hypothesis, there are many examples for which the Hurwitz space
is not irreducible. However, there are nonetheless many examples for which
the Hurwitz space is irreducible which are not covered by our main theorem.
We will consider here one generalization which remains in the pure-cycle case,
but seeks to drop the genus-0 hypothesis in favor of an assumption that could
be viewed philosophically as an effective form of the results of Conway-Fried-
Parker-Völklein, in that it requires at least 3g transpositions in order to apply.
However, our result will be conditional on a positive answer to a geometric
question, which we now discuss.
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Zariski asked whether every Hurwitz space of genus-g covers of P1 with
prescribed branching type over at least 3g points maps dominantly to Mg under
the forgetful map. This is now known to be false in some cases, but we will be
interested in an analogous yet different question which arises when one wants to
compare the points of view of linear series and branched covers:

Question 5.4. Fix r, g ≥ 0, d ≥ 1 and �e = (e1, . . . , er) with 2 ≤ ei ≤ d
for all i, and 2d − 2 − g =

∑
i (ei − 1). Consider the space MR parametrizing

tuples consisting of a genus-g curve C, points P1, . . . , Pr+3g on C, and a map
f : C → P

1 of degree d, ramified to order ei at Pi for i ≤ r and simply ramified
at Pr+1, . . . , Pr+3g. Does every component of MR map dominantly to Mg,r under
the map induced by forgetting f and Pr+1, . . . , Pr+3g?

The positive answer to this question in the case g = 0 is Proposition 3.2. We
also remark that Steffen [19] (see also [12]) has a result along these lines for
linear series of any degree and dimension, but without any ramification specified.
She accomplishes this by studying degeneracy loci of suitable maps of vector
bundles; one might try to study our question by looking at Schubert conditions
on maps of vector bundles, and suitable intersections of such conditions.

The application of Question 5.4 to irreducibility of Hurwitz spaces is as
follows.

THEOREM 5.5. Fix r, g, d, and �e as above. Then a positive answer to Question
5.4 implies thatH(d, r, g,�e) is irreducible, whereH(d, r, g,�e) is the Hurwitz space
of covers of P1 of genus g and degree d, with a single ramified point of index ei over
the ith branch point for i ≤ r, and simple branching over the remaining branch
points. Equivalently, the set of Hurwitz factorizations consisting of ei-cycles and
3g transpositions all lie in a single pure braid orbit.

Proof. We first consider the generalization of Proposition 1.1 in this case.
The argument for the equivalence of (i) and (ii) goes through unmodified in
the generality of higher-genus covers. The argument for the equivalence of (iii)
and (iv), where in both cases we prescribe simple ramification at 3g additional
unspecified points, is likewise the same as in the genus 0 case. We then have that
the Hurwitz space is the image of (a dense open subset of) MR, so we see that
(iii) or (iv) imply (i) and (ii), and it is enough to check (iv), i.e., to work from
the point of view of linear series.

A positive answer to Question 5.4 takes the place of Proposition 3.2, and
allows us to work over the generic r-marked curve of genus g, or more specifi-
cally, locally around a given degenerate curve, as in the genus 0 case. Instead of
working with a totally degenerate curve, we work with a curve C0 consisting of a
copy of P1 with r marked points, and with g elliptic tails. As in the proof of [14,
Thm. 2.6], the limit linear series on this curve are completely determined by their
aspects on P1; on each elliptic tail, they consist of the degree 2 map to P1, simply
ramified at the node (and at three other points, which are uniquely determined as
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differing from the node by 2-torsion points). Furthermore, the ramification im-
posed at each node on P1 is simple ramification; thus, the limit linear series are
in natural bijection with the linear series on P1 with the prescribed ramification
at r + g points. We know by Theorem 1.2 that the space of these linear series
is irreducible as we allow the r + g ramification points to move, so we conclude
irreducibility of the space of g1

d’s in a neighborhood of C0, and in particular, on
the generic r-marked curve of genus g, as desired.

Results of Conway-Fried-Parker-Völklein (see [9, Appendix], and also [8])
show that, roughly speaking, for any given group and collection of conjugacy
classes, if every conjugacy class is repeated often enough, then the components
of the Hurwitz space are determined by a certain invariant, called the lifting
invariant. Our results fit into the same general philosophy, and might be thought
of as an effective version of Conway-Fried-Parker-Völklein for the pure-cycle
case.

Finally, we remark that Question 5.4 would potentially have interesting appli-
cations to the study of covers in positive characteristic, as well. One cannot hope
for a positive answer outside characteristic 0 without some further hypotheses:
for instance, in the case g = 0, the statement is known to fail if one does not
require all ei < p (see [16, Ex. 5.6]). However, a positive answer in the case all
ei < p would give an important step towards giving new nonexistence results
for tame covers in positive characteristic, as is carried out in the genus-0 case
in [17].

We conclude with a brief discussion of the notion of lifting invariants de-
veloped by Fried and Serre, including their use by Fried in applying our main
results to his theory of modular towers, as well as their likely role in generalizing
our results to curves of higher genus. For the sake of simplicity, we restrict our
attention to the case of Ad-covers, and the lifting invariants known as spin invari-
ants, which are discussed in [18] by Serre, who credits Fried for producing an
explicit formula, with proofs of some cases. If we have a Hurwitz factorization
generating the monodromy group Ad, the spin invariant takes values in {±1},
and, as the name suggests, is an invariant both under simultaneous conjugation,
and under the braid action. It can therefore be used to distinguish components of
Hurwitz spaces.

However, the spin invariant is an important tool in other contexts as well. For
instance, Fried [8] has used our results in the r = 4 case as a starting point for
computations, in which spin invariants play a crucial role, which have allowed
him to verify his main conjecture on modular towers in infinite families of exam-
ples. The conjecture asserts that there are no rational points at sufficiently high
levels of modular towers, which are certain towers of Hurwitz spaces generalizing
modular curve towers, and depending on a choice of auxiliary prime p. The new
families of examples are the first infinite families not arising as modular curve
towers for which the conjecture has been verified. Fried had shown earlier [6] that
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in order to verify his conjecture, it suffices to produce at any level of the tower
enough p-cusps, which are special points on the boundary of the Hurwitz spaces
in the tower. In the examples arising from our theorem, there are no p-cusps
at the bottom level of the tower, but spin invariant computations allow Fried to
show that in most cases there are enough p-cusps at the next level. Ultimately, he
has been able to verify his main conjecture in the genus-0 pure-cycle case (with
all cycles odd, so that G = Ad), with p = 2, r = 4 and all four cycles having the
same length. For certain d, he has also verified the conjecture for all p.

Returning to the issue of distinguishing components, spin (and more generally,
lifting) invariants are also likely to play an important role in attempts to generalize
our understanding of components of Hurwitz spaces. For instance, in [7] Fried
studies pure-cycle covers of arbitrary genus, but with all cycles of length 3, and
finds that for positive genus, the Hurwitz space has two components, but they
are distinguished by the spin invariant. Thus, the simplest plausible umbrella
result for the case of pure-cycle Ad-covers would be that the components of the
Hurwitz space are always determined by their spin invariant. This would not
be a complete answer to the question of components, as it would still remain to
determine which spin invariants actually occur, but it would nonetheless constitute
tremendous progress.

Finally, we would be remiss if we did not mention in this context a closely
related question of great importance to applications in inverse Galois theory, and
in particular to modular towers: the number of components of a more refined
version of the Hurwitz space known as the inner Hurwitz space. In our case that
the monodromy group is Ad, the inner Hurwitz space can have at most two com-
ponents for each component of the (naive) Hurwitz space, depending on whether
or not simultaneous application of an outer automorphism can be achieved via
braid transformation. In the examples discussed above, both possibilities occur,
so we see that while the components of the inner spaces are not completely deter-
mined by the spin invariant, they are determined up to an explicit and frequently
tractable factor of at most 2.
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