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Section 1 recaps Dèbes’ presentation [De04] of the universal p-Frattini cover as
an extension of a finite group by a free pro-p group and gives examples illustrating a
common lack of discrete groups to use as a model for this profinite object. Section 2
constructs the quotient groups n

p G̃ instead via modular representation theory, the
key tool being a categorical equivalence due to Gruenberg and Roggenkamp; each
such group is a canonical extension of the preceeding group n−1

p G̃ by that group’s
p-Frattini module. I give several examples of this module in Section 3 and discuss
means of reducing calculations to the normalizer of the p-Sylow. Section 4 concerns
the evolution with n of the dimension and composition series of the p-Frattini modules.
Only appearances of the trivial simple module in a composition series can obstruct
components of Hurwitz spaces; we see this in the final section, as well as how the
division of cusps into types forms part of a rubric toward a formula for the genuses
of high-level components in a reduced modular tower when r = 4. An appendix
explicitly displays the functors for the Gruenberg-Roggenkamp equivalence.

Despite relatively few explicit citations herein, the results surveyed have been com-
prehensively catalogued (and produced) by Fried in his work on modular towers and
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his series of papers on the subject are a primary source: [F95], [FK97], [F02],
[BF02], and [FS04]. For a reference on modular representation theory, I recommend
Benson’s text [Be98].

Before proceeding, recall some elementary categorical definitions.

Definition 0.1. — In any category, for any objects X and Y , a morphism φ ∈
Hom (X, Y ) is epic iff for all objects Z and for all morphisms ψ1, ψ2 ∈ Hom (Y, Z), if
ψ1 ◦ φ = ψ2 ◦ φ then ψ1 = ψ2.

This purely categorical definition is synonymous with “surjective” in the categories
of abstract groups, profinite groups, and modules. Hence, equivalences between these
categories pass along surjectivity of morphisms, as well as the following two properties
of objects:

Definition 0.2. — An object P of a category C is projective iff for any objects X

and Y of C, any morphism ψ ∈ Hom (P, Y ), and any epic morphism φ ∈ Hom (X, Y ),
there exists a morphism π ∈ Hom (P, X) such that φ ◦ π = ψ, as illustrated in the
following commutative diagram:

P
∀ψ−→ Y⏐⏐�∃π ‖

X
∀φ
−� Y

An object F of C is Frattini iff every morphism to F is epic, i.e. for any object X of
C and any morphism φ ∈ Hom (X, F ), φ is epic.

Given an object X of a category C, a cover of X is defined to be an epic mor-
phism in Hom (Y, X) for some object Y . The collection of covers of X comprise the
class of objects of a category whose morphisms are as follows — given two covers,
φ1 ∈ Hom (Y, X) and φ2 ∈ Hom (Z, X), Hom (φ1, φ2) is defined to be the set of
morphisms ψ in Hom (Y, Z) such that φ2 ◦ ψ = φ1. We also sometimes consider sub-
categories where we restrict the covers under consideration, but in these cases the set
of morphisms between two objects remains the same as in the full category of covers,
i.e. these subcategories are full in the technical sense. In the categories of covers we
will consider, epic morphisms will always turn out to be surjective.

Conventions. G is always a finite group and k is always a field. The cyclic group
of order n is Cn, the dihedral group of order 2n is Dn, the alternating group on n

letters is An, and the symmetric group on n letters is Sn. The conjugate gag−1 of
one element a of G by another element g is denoted by ga. All modules are finitely
generated left-modules.
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1. The universal p-Frattini cover

Fix a finite group G and consider the category of covers of G within the category
of profinite groups; call this category of covers C(G). A projective Frattini object in
this category is called the universal Frattini cover of G, as is its domain, which is
given the notation G̃. One proof of the existence of this object comes from a Zorn’s
lemma construction: projective profinite groups are precisely those isomorphic to
closed subgroups of free profinite groups [FJ86], so take a minimal closed subgroup
mapping onto G in any epimorphism onto G with domain a free profinite group.
The kernel of the universal Frattini cover is (pro-)nilpotent by the Frattini Argument
from which its name derives. Hence, it is the product of its p-Sylows; being closed
subgroups of a projective profinite group, they will have to be projective as well, and
projective pro-p groups must be free as pro-p groups [FJ86].

Now consider pG̃, the quotient of G̃ by the p′-Hall subgroup of the kernel of G̃,
i.e. the product of all of the s-Sylows of the kernel, where s denotes a rational prime
distinct from p. This quotient profinite group is called the universal p-Frattini
cover of G, as is the natural map to G which it enherits. This map is also character-
ized by being the projective Frattini object in the subcategory Cp∞(G) of C(G) whose
objects are precisely those objects of C(G) with kernel a pro-p group. The kernel of
the universal p-Frattini cover is a free pro-p group called ker0.

The easiest example is when G is a p-group; then, pG̃ is a free pro-p group with the
same minimal number of (topological) generators as G. As a consequence of Schur-
Zassenhaus, if G merely has a normal p-Sylow P , then G � P>�H, where H � G/P ;
we say G is p-split. When G is p-split, pG̃ � F̂n(p)>�H, where n is the minimal
number of generators of the p-Sylow P of G and F̂n(p) is the pro-p completion of the
free group on n generators. The rank (minimal number of topological generators) of
ker0 is 1 + (n − 1)|P |, by the Schreier formula.

Example 1.1. — The alternating group on four elements is isomorphic to V4>�C3,
where a given generator g of C3 acts on the Klein four-group V4 by cyclically permuting
the three non-trivial elements. There will be a choice of two (topological) generators
a and b of F̂2(2) such that conjugation by g on F̂2(2) (in 2Ã4 � F̂2(2)>�C3) is given
by ga = b and gb = b−1a−1. Clearly, a and b generate a discrete, dense free subgroup
F2 of F̂2(2) which is stabilized by C3. We get the following commutative diagram of
exact sequences:

1 −→ F2 −→ F2>�C3 −→ C3 −→ 1⏐⏐� ⏐⏐� ‖
1 −→ F̂2(2) −→ 2Ã4 −→ C3 −→ 1

By the Schreier formula, ker0 has rank 5 and its intersection with F2 is a free group
F5 of rank 5, normal inside of F2. There is another commutative diagram of exact
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sequences:
1 −→ F5 −→ F2>�C3 −→ A4 −→ 1⏐⏐� ⏐⏐� ‖
1 −→ F̂5(2) −→ 2Ã4 −→ A4 −→ 1

In general, the approach we’ve been following so far fails to provide detailed in-
formation about the universal p-Frattini cover, the preceeding example being a rare
counterexample describable by a discrete analogue. Even p-split groups can often not
be described this way. One reason to expect this failure is the non-constructiveness of
using Zorn’s lemma to create the universal cover. Consider two examples illustrating
the limitations.

Example 1.2. — Our first example comes from Holt and Plesken [HP89]. Embed-
ding A4 into A5 leads to an embedding of 2Ã4 into 2Ã5 and the following commutative
diagram of exact sequences:

1 −→ F̂5(2) −→ 2Ã4 −→ A4 −→ 1⏐⏐� ⏐⏐� ⏐⏐�
1 −→ F̂5(2) −→ 2Ã5 −→ A5 −→ 1

The leftmost vertical map is an isomorphism. However, there is NO group Γ which
can fit into a commutative diagram of exact sequences of the following form, where
the vertical maps are dense monomorphisms:

1 −→ F5 −→ Γ −→ A5 −→ 1⏐⏐� ⏐⏐� ‖
1 −→ F̂5(2) −→ 2Ã5 −→ A5 −→ 1

The proof examines the character of the 2-adic Frattini lattice of SL2(F5) and is
beyond the scope of these limited notes.

Example 1.3. — A result of Dyer and Scott [DS75] says that for any automorphism
σ of prime order s acting on a discrete free group F , there is a basis X of F such
that, for every x in X, one of the following holds:

i) : σ(x) = x

ii) : x belongs to a subset of X containing exactly s elements which are cyclically
permuted by σ

iii) : x belongs to a subset {x1, . . . , xs−1} of X such that σ(xj) = xj+1 when
j < s − 1, while σ(xs−1) = x−1

s−1 . . . x−1
1 .

As a corollary, the induced action of σ on the free abelian group (and hence Z〈σ〉-
module) F/(F, F ) would force the latter to be a direct sum of copies of the trivial
module, the group ring Z〈σ〉, and the augmentation ideal of the group ring.

Now let G = F8>�F
∗
8, where F8 denotes the additive group of the field and F

∗
8 the

multiplicative group, while the action of the latter on the former is by multiplication.



MODULAR REPRESENTATIONS FOR MODULAR TOWERS. 5

Then, G � (C2×C2×C2)>�C7, where a generator g of C7 cyclically permutes the non-
trivial elements of the 2-Sylow of G. The universal 2-Frattini cover 2G̃ is isomorphic
to F̂3(2)>�C7, but there is no non-trivial action of C7 on the discrete free group F3.

Furthermore, ker0 will be a free pro-2 group of rank 17. Conjugation by a lift of
g in 2G̃ produces a natural Z2C7-lattice structure on ker0 /(ker0, ker0), whose fixed
points under the action of C7 form a sublattice of rank 2. Suppose there was a group
Γ that fit into a commutative diagram of exact sequences of the following form, where
the vertical maps are dense monomorphisms:

1 −→ F17 −→ Γ>�C7 −→ G −→ 1⏐⏐� ⏐⏐� ‖
1 −→ ker0 −→ 2G̃ −→ G −→ 1

Then F17/(F17, F17) will be a ZC7-lattice, with a dense monomorphism into
ker0 /(ker0, ker0); the fixed points of the action of C7 on F17/(F17, F17) will thus form
a sublattice of rank 2. However, the result of Dyer-Scott would force the fixed point
sublattice to have rank at least 5, a contradiction. In fact, by examining the character
of the 2-adic Frattini lattice of G, we can rule out any group from appearing in the
middle term of the above exact sequence, not merely a semidirect product Γ>�C7.

2. The p-Frattini module

Modular represenation theory is the right context to produce a canonical sequence
of finite groups whose projective limit is the universal p-Frattini cover. This approach
is entirely constructive and the modular tower of Hurwitz spaces is defined using this
sequence of groups.

Let R be a commutative ring with 1. Every group ring RG has a one-dimensional
trivial simple module, a copy of R on which every element of G acts as the identity;
we denote it by 111RG, omitting the subscript when the context is obvious. The kernel
of the canonical morphism from RG to 111RG, sending the identity of G to 1, is called
the augmentation ideal and is denoted by ωRG. We often omit the subscript on both
of these objects when the context is obvious.

Let CRG(G) represent the category of covers of G (in the category of groups) whose
kernels are abelian groups with a specified R-module structure. note that these kernels
are naturally RG-modules with the action of an element g ∈ G given via conjugation
by any preimage of g in the domain of the cover. For any RG-module M , let CRG(M)
be the category of covers of M (in the category of RG-modules).

Fact 2.1 (Gruenberg-Roggenkamp, [GR77]). — There is an equivalence of cat-
egories between CRG(G) and CRG(ωRG) under which corresponding objects have iso-
morphic kernels.
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Note: When R is Z or Fp, the group structure of the kernel determines its R-module
structure. If R is Ẑ (or Zp) and the kernel is a finitely generated R-module, the
domain of the cover is naturally a profinite group; conversely, if the domain of the
cover is given a profinite group structure, the kernel will inherit a canonical Ẑ-module
structure. Finally, note that the finite-index subgroups of any finitely (topologically)
generated profinite group are closed (cf Nikolov-Segal [NS03]), so when R is Ẑ and
the kernel is a finitely generated R-module, the group structure of the domain will
determine the topology.

Remark 2.2. — For any homomorphism ϕ : H → G, there is a covariant functor
resϕ from CRG(G) to CRH(H) given by taking the fibre product with ϕ. The inclusion
ωRH ⊆ ωRG is an RH-module homomorphism and this defines a covariant functor resϕ

from CRG(ωRG) to CRH(ωRH) by taking the fibre product with the inclusion. These
two functors commute with the Gruenberg-Roggenkamp categorical equivalence.

For every finitely generated kG-module M , there will exist a projective Frattini
object in CkG(M). The domain of such an object will be a projective kG-module
denoted by PkG(M); the kernel of a projective Frattini object in CkG(M) is denoted
by ΩkGM . The process of assigning such a kernel to a module is called the Heller
operator (denoted by ΩkG, of course), and iterations of it are defined inductively:
Ωn+1

kG M := ΩkG(Ωn
kGM).

By Gruenberg-Roggenkamp’s categorical equivalence, there will be a projective
Frattini object in CFpG(G); the domain of this object is denoted by 1

pG̃ and is called
the universal elementary abelian p-Frattini cover of G. The sequence of finite
groups used in the definition of a modular tower are defined inductively from this:
n+1
p G̃ := 1

p

(
ñ
p G̃

)
.

These groups can also be defined inductively as quotients of the entire universal
p-Frattini cover. The Frattini subgroup Φ(P ) of a pro-p group P is defined to be
P p(P, P ), the closure of the subgroup generated by the p-th powers and commutators
of elements of P . Iteratively defining Φn+1(P ) := Φ(Φn(P )) yields the Frattini series,
a descending series of closed subgroups of P . The intersection of the members of
the Frattini series is trivial since this holds true in any finite p-group. Now define
iteratively kern+1 := Φ(kern), beginning with the kernel ker0 of the map from pG̃

down to G.

Theorem 2.3. — For every natural number n, pG̃/ kern � n
p G̃, and so pG̃ � lim

←−
n
p G̃.

Proof. — The second isomorphism follows from the first because ∩n→∞ kern = 1.
(By convention, 0

pG̃ = G.) Note that if H � G is Frattini with p-group kernel, what
we call a p-Frattini cover, then pH̃ � pG̃. The first isomorphism will thus be proven by
induction once it is shown that pG̃/ ker1 � 1

pG̃. The universal defining property of 1
pG̃
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forces it to have an epimorphism onto pG̃; vice-versa, pG̃ must have an epimorphism
onto 1

pG̃, and the kernel of this must contain ker1.

One can specify the isomorphism class of the kernel (the p-Frattini module)
of the universal elementary abelian p-Frattini cover of G precisely in terms of the
modular representation theory of G:

Theorem 2.4 (Gaschütz, [Ga54]). — The p-Frattini module of G is isomorphic
to Ω2

FpG111.

Proof. — Since projective kG-modules are precisely those isomorphic to a direct sum-
mand of a free kG-module, there is a projective FpG-module P such that FpG �
P ⊕ PFpG(111) and hence ωFpG � P ⊕ ΩFpG111. Thus, PFpG(ωFpG) � P ⊕ PFpG(ΩFpG111)
and the result follows from the equivalence of Gruenberg and Roggenkamp.

Remark 2.5. — A minor corollary of the theorem is that the p-Frattini module has
dimension congruent to 1 modulo the order of the p-Sylow P of G, since projective
FpP -modules must be free.

By dimension-shifting,

H2(G, Ω2
FpG111) � Ext2(111FpG,Ω2

FpG111)
� Ext1(111FpG,Ω1

FpG111)
� Hom

(
111FpG,111FpG

)
� Fp

and so there is a unique group providing a non-split extension of G by its p-Frattini
module. This must be 1

pG̃.

Example 2.6. — The modular curve X1(pn+1) is a quotient of the reduced Hurwitz
space associated to Dpn+1 with r = 4 and each conjugacy class the set of involutions.
Assume that p is odd. Let’s see that 1

pD̃pn � Dpn+1 when n ≥ 1.
There are two simple FpDpn -modules, the trivial module 111 and the sign module

Sgnp, which consists of a copy of Fp with the involutions of Dpn acting as multipli-
cation by −1 and the other elements acting trivially. The restriction of any simple
module S to a 2-Sylow H is projective and so S↓FpH↑FpDpn� PFpDpn (S). The theory
for the p-split case readily shows that PFpDpn (Sgnp) � PFpDpn (ΩFpDpn 111). Conclude
from counting dimensions that the p-Frattini module for Dpn is one-dimensional (and,
in fact, Sgnp); the dihedral groups are a model for the very restricted class of groups
for which this happens (see Fact 4.1).

Now note that the natural map Dpn+1 � Dpn is Frattini and, since its kernel is
one-dimensional, must be the universal elementary abelian p-Frattini cover.
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In the sequel, to remove the notational heaviness, n
p G̃ will be denoted by Gn and

Ω2
Fp

n
p G̃

111 by Mn.

3. Restriction to the normalizer of a p-Sylow

There are explicit methods for computing the p-Frattini module of a p-split group
(i.e. the normalizer of a p-Sylow), e.g. through the use of an expansion of Jennings’
theorem [S04a]. I omit these here for reasons of brevity, but will show a relationship
between the p-Frattini module for the normalizer and that for the whole group. We
will also see more intricate examples of p-Frattini modules.

Recall the concepts of restriction and induction. Fix a subgroup H of G. The
restriction M↓kH of a kG-module M to kH simply means: regard M as a kH-module
via the canonical inclusion of kH in kG. Given a kH-module M , the induced module
M↑kG is the tensor product kG ⊗kH M . Since projective modules are exactly those
isomorphic to direct summands of free modules, both the restriction and induction of
a projective module are projective.

Lemma 3.1. — Let H be a subgroup of G. The pullback of H in the cover 1
pG̃ � G

is a projective object in CFpH(H). There is a projective FpH-module N such that
M0↓FpH� N ⊕ Ω2

FpH111.

Proof. — The pullback of H in the group cover corresponds under the Gruenberg-
Roggenkamp equivalence to the pullback of ωFpH in the cover PFpG(ωFpG)

ϕ
� ωFpG (cf

Remark 2.2). There is a free FpH-module N ′ such that ωFpG↓FpH� N ′⊕ωFpH . Since
N ′ is projective, it splits in the cover ϕ (regarded as an FpH-module homomorphism),
and so PFpH(ωFpG)↓FpH is a direct sum of N ′ and some projective cover of ωFpH : this
projective cover corresponds to the pullback of H. The final statement follows from
the decomposition of this projective cover into the direct sum of a projective module
N and PFpH(ωFpH).

Remember that a module is indecomposable if it has no non-trivial direct sum
decomposition.

Fact 3.2. — A kG-module M is indecomposable and non-projective iff ΩkGM is.

Hence, the p-Frattini module of G is indecomposable and non-projective when p

divides the order of G. Together, the next lemma and the fact following it show a
dichotomy between level 0 and the higher levels. The notation NG(H) denotes the
subgroup of elements of G that normalize a given subgroup H of G.

Lemma 3.3. — M0 is isomorphic to a direct summand of
(
Ω2

FpNG(P )111
)
↑FpG, where

P is a p-Sylow of G.
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Proof. — Every FpG-module M is a direct summand of M↓FpNG(P )↑FpG by mapping
m ∈ M to the element

1
(G : NG(P ))

∑
gNG(P )⊆G

g ⊗ g−1m

of FpG ⊗FpNG(P ) M ; the number (G : NG(P )) is the index of NG(P ) in G, i.e.
|G|/|NG(P )|. Now, by Lemma 3.1, M0↓FpNG(P )↑FpG is isomorphic to a direct sum of(
Ω2

FpNG(P )111
)
↑FpG and some projective FpG-module. Since M0 is indecomposable and

non-projective, it must be a direct summand of
(
Ω2

FpNG(P )111
)
↑FpG.

Those versed in Green’s correspondence will note that it commutes with the Heller
operator, and recognize the previous lemma as a special case.

Fact 3.4 (Corollary 3.6, [S04b]). — Let n ≥ 1. Regard Mn−1 as a subgroup of
Gn. Let H be any subgroup of Gn containing Mn−1. Then Mn↓FpH is isomorphic to
the p-Frattini module of H.

In particular, if n ≥ 1 and Pn is the p-Sylow of Gn, then Mn ↓FpNGn (Pn)�
Ω2

FpNGn (Pn)111.
The next three examples consider A5 for the three rational primes dividing its

order. Recall that, for every finite group G with a split BN-pair over the prime p

(and in particular for a Chevalley group over a finite field of characteristic p), there
is a projective simple module called the Steinberg module. When G is PSL2(Fq)
or SL2(Fq), this is the quotient of a permutation module by the one-dimensional
submodule of elements fixed by G, the G-set defining the permutation module being
the projective line P

1(Fq) with the natural action of G.

Example 3.5. — Let p = 2. There are three isomorphism classes of simple F2A5-
modules, 111, a four-dimensional simple module T , and the Steinberg module (via the
isomorphism of A5 with SL2(F4)). The simple module T is just the natural module
for SL2(F4), a copy of F

2
4, but regarded as a vector space over F2.

The normalizer of the 2-Sylow of A5 is isomorphic to A4, a 2-split group. As noted
in Example 1.1, the kernel of the universal 2-Frattini cover of A4 will have rank 5,
and so the 2-Frattini module will have dimension 5. The 2-Frattini module M0 for A5

also has dimension 5 and so M0↓F2A4� Ω2
F2A4

111; on the other hand, inducing Ω2
F2A4

111
up to A5 produces a module with dimension 25. The 2-Frattini module M0 can also
be (spuriously) described as a quotient of a permutation module by 111: 111F2D5 ↑F2A5

has a basis labelled by the 5-Sylows of A5, and the action of A5 on this basis is given
by conjugation of the 5-Sylows — M0 is isomorphic to the quotient of this module by
the submodule generated by a vector equalling the sum of the basis vectors, a vector
which is clearly stabilized by A5. It turns out that M0 has one simple submodule, a
copy of T , and its quotient by this submodule is isomorphic to 111.
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Example 3.6. — Let p = 3. There are three isomorphism classes of simple F3A5-
modules: 111, a four-dimensional module S, and a six-dimensional module, T . The
normalizer of the 5-Sylow of A5 is isomorphic to D5 and T is isomorphic to N↑F3A5 ,
where N is a copy of F3 on which the involutions of D5 act as multiplication by
−1 and the other elements act trivially. The permutation module 111F3A4 ↑F3A5 has
a basis labelled by the 2-Sylows of A5, and the action of A5 on this basis is given
by conjugation of the 2-Sylows — S is isomorphic to the quotient of this module by
the submodule generated by a vector equalling the sum of the basis vectors, a vector
which is clearly stabilized by A5.

The normalizer of the 3-Sylow of A5 is isomorphic to D3 and its 3-Frattini module
is the sign module Sgn3 of Example 2.6. The induced module Sgn3 ↑F3A5 is ten-
dimensional and is isomorphic to S⊕T . Since T is projective, M0 must be isomorphic
to S.

Example 3.7. — Let p = 5. There are three isomorphism classes of simple F5A5-
modules, 111, the Steinberg module (via the isomorphism of A5 with PSL2(F5)), and
a three-dimensional module S. The latter is a subquotient of a permutation module:
111F5A4↑F5A5 has a basis labelled by the 2-Sylows of A5, and the action of A5 on this
basis is given by conjugation of the 2-Sylows. There is a homomorphism ϕ from
111F5A4 ↑F5A5 to 111 given by taking an element of the former module to the sum of
its coefficients (with respect to the basis just described); the sum of the given basis
elements generates a submodule T of 111F5A4↑F5A5 isomorphic to 111. The simple module
S is the quotient of ker(ϕ) by T .

The normalizer of the 5-Sylow of A5 is isomorphic to D5 and its 5-Frattini module
is the sign module Sgn5 of Example 2.6. The induced module Sgn5 ↑F5A5 is six-
dimensional, so, by Remark 2.5, M0 can be either one-dimensional (and hence 111)
or the entire induced module; the former can’t happen because M0↓F5D5⊇ Sgn5, by
Lemma 3.1. A simple use of Nakayama’s relations (aka Shapiro’s lemma) shows that
M0 has neither a submodule nor a quotient isomorphic to 111. Therefore, M0 has one
simple submodule, a copy of S, and its quotient by this submodule is also isomorphic
to S.

4. Asymptotics of the p-Frattini modules Mn

The first recursive formula was hinted at in Fact 3.4. If Mn is regarded as a p-
group, then its universal p-Frattini cover is a free pro-p group of rank equal to the
dimension of Mn. The Schreier formula takes the form:

dimFp (Mn+1) = 1 + |Mn|
[
dimFp (Mn) − 1

]
.

Since |Mn| is equal to p raised to the power of the dimension of Mn, this forces the
dimension of Mn to rise very rapidly with n via recursive exponentiation, provided
dimFp

(M0) > 1; but if dimFp
(M0) is 0 or 1 then dimFp

(Mn) is the same for all natural
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numbers n. Of course, dimFp
(M0) = 0 iff p does not divide the order of G, while

Griess and Schmid determined precisely the rare circumstance when dimFp
(M0) = 1.

For the maximal normal p′-subgroup (i.e. having order prime to p) of G, group
theorists use the notation Op′(G).

Fact 4.1 (Griess-Schmid, [GS78]). — The p-Sylow of G/Op′(G) is non-trivial,
cyclic, and normal iff dimFp

(M0) = 1.

The dihedral groups (Example 2.6) provide the natural example of this Fact.
The group Gn does not necessarily act faithfully on the module Mn; Griess and

Schmid also determined the kernel of this action, the set CenGn(Mn) of elements of
Gn that centralize Mn. Let φ : G � G/Op′(G) denote the natural quotient and let
H be the maximal normal p-subgroup of G/Op′(G); the subgroup Op′p(G) of G is
defined to be φ−1(H).

Fact 4.2. — CenGn(Mn) =
{

Op′p(Gn) if dimFp (Mn) = 1
Op′(Gn) if dimFp (Mn) �= 1

In some sense, we can reduce to the case where Op′(G) = 1. Let H = G/Op′(G).
Then Gn is isomorphic to the fibre product over H of n

p H̃ and G; the cover Gn � G

induces an isomorphism Op′(Gn) � Op′(G) for all n.
An interest in the obstruction of Hurwitz space components of a modular tower

leads to an interest in the composition series of the p-Frattini module, as will be
outlined in the next section. The final result here is an asymptotic result on the
composition series. The number of times a simple module S appears as a subquotient
in a given composition series of a kG-module M is an invariant of M denoted by
#S(M); the density 	S(M) of S in M is defined to be #S(M)/dimk (M).

Fact 4.3 (Semmen, [S04b]). — If dimFp (M0) > 1 then, for any simple FpG-
module S, lim

n→∞
	S(Mn) = 	S(FpG/Op′(G)).

The proof of this fact provides a precise recursive formula for #S(Mn).

5. Modular towers

For any group G and r-tuple C = (C ′
1, . . . , C

′
r) of conjugacy classes of G, the set

of inner Nielsen classes Ni (G,C)in is defined to be the set of equivalence classes of
r-tuples (g1, . . . , gr) of G satisfying:

i) : 〈g1, . . . , gr〉 = G,
ii) : g1 . . . gr = 1, and
iii) : there exists σ ∈ Sr such that, for all i, g(i)σ ∈ C ′

i;

two r-tuples (g1, . . . gr) and (g′1, . . . g
′
r) are equivalent iff there exists h ∈ G such that

(hg1h
−1, . . . , hgrh

−1) = (g′1, . . . , g
′
r). The space P

r \ Dr parametrizes subsets of P
1
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of cardinality r. The Hurwitz monodromy group Hr := π1(Pr \ Dr) has generators
q1, . . . , qr−1 with a canonical action on Ni (G,C)in:

(g1, . . . , gr)qi = (g1, . . . , gi−1, gigi+1g
−1
i , gi, gi+2, . . . gr).

This permutation representation of Hr produces an unramified cover H (G,C)in �
P

r \ Dr with fibre Ni (G,C)in, whose domain is called a Hurwitz space. When G

has trivial center (i.e. no non-trivial element of G commutes with all elements of G),
this is a fine moduli space for equivalence classes of covers X � P

1 together with
an identification of the monodromy group with G such that the ramification data
is described by an element of Ni (G,C)in — the equivalence of covers here must be
G-equivariant.

Whenever H2 � H1 is a group epimorphism with p-group kernel, every conjugacy
class of H1 whose elements have order prime to p has a unique lift to a conjugacy
class of H2 whose elements have order prime to p. Hence (cf [De04, Lifting Lemma
1.1]), if C is an r-tuple of conjugacy classes whose elements have order prime to p,
there is a canonical modular tower

. . . −→ H
(

n+1
p G̃,C

)in ψn−→ H
(

n
p G̃,C

)in

−→ . . .

where the map between Hurwitz spaces is induced by applying the epimorphism
ϕn : n+1

p G̃ � n
p G̃ coordinatewise to the inner Nielsen classes.

Recall that a group is p-perfect if it has no non-trivial p-group quotient.

Fact 5.1. — If n
p G̃ is p-perfect and has trivial center, then n

p G̃ is also p-perfect and
has trivial center.

Assuming the conditions of this Fact hold for G, this forces all of the Hurwitz
spaces of the modular tower to be fine moduli spaces.

Fix a composition series of Mn. For any two adjacent entries N2 ⊂ N1 of the series,
there is a canonical cover

H2 := n+1
p G̃/N2 � H1 := n+1

p G̃/N1

whose kernel will be a simple FpH1-module (in fact, a simple FpG-module). The map
ψn factors into a sequence of irreducible maps

H
(

n+1
p G̃,C

)in

→ . . . → H (H2,C)in → H (H1,C)in → . . . → H
(

n
p G̃,C

)in

Note that even if all of the groups n
p G̃ have trivial center, many of the intermediate

groups will not (cf Fact 4.3).

Fact 5.2 (Fried-Kopeliovich, [FK97]). — If the kernel of H2 � H1 is isomor-
phic to 111, then H (H2,C)in → H (H1,C)in is injective. Otherwise, it is surjective.

Connected components of a Hurwitz space correspond one-to-one to orbits of the

action of Hr on the Nielsen classes; a component O of H
(

n
p G̃,C

)in

is obstructed if
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its preimage under ψn is empty. Thus, only intermediate epimorphisms H2 � H1

with kernel isomorphic to 111 can produce obstruction. This observation motivated the
analysis leading to Fact 4.3.

Two covers φ1 : X1 � P
1 and φ2 : X2 � P

1 are weakly equivalent if there
exist isomorphisms α : X1

∼→ X2 and β : P
1 ∼→ P

1 such that φ2 ◦ α = β ◦ φ1. The
reduced Hurwitz space H (G,C)in,rd is the quotient of the usual Hurwitz space by this
expanded equivalence, and inherits a natural surjection onto (Pr \ Dr) /PGL2(C).

When r = 4,
(
P

4 \ D4

)
/PGL2(C) is naturally isomorphic to P

1 \ {∞} and the
surjection of the reduced Hurwitz space is ramified only over 0 and 1; a natural
compactification of the reduced Hurwitz space makes it a curve cover of P

1. The
generic fibre Ni (G,C)in,rd of this cover can be naturally identified with a quotient of
Ni (G,C)in as follows.

The center of H4 is generated by an element (q1q
−1
3 )2 of order 2 which acts trivially

on the set of inner Nielsen classes. The quotient M4 := H4/〈(q1q
−1
3 )2〉 acts faithfully

on the class of all inner Nielsen classes for all finite groups G, and is isomorphic to a
semi-direct product Q′′>�PSL2(Z), where Q′′ is generated by the images of (q1q2q3)2

and q1q
−1
3 , while PSL2(Z) is generated by the images of q1q2 and q1q2q1, elements of

order 3 and 2, respectively. These latter two elements map down to elements γ0 and
γ1, respectively, of M4 := M4/Q′′. The image of q2 in M4 is the inverse of γ0γ1 and
is called γ∞.

The stabilizer in PGL2(C) of a point z of P
4 \D4 lying over a point of P

1 \{0, 1,∞}
is a Klein 4-group whose action on the fibre over z in H (G,C)in is the same as the
action of Q′′ on the set of inner Nielsen classes; the set of reduced inner Nielsen classes
is the quotient. Inertia generators for the cover H (G,C)in,rd � P

1 over 0, 1, and ∞
are exactly the images of γ0, γ1, and γ∞, respectively, in the monodromy group.

Fried conjectures [De04, Remark 2.5] that only a finite number of components in a
reduced modular tower for r = 4 will have genus 0 or 1. The Riemann-Hurwitz formula
computes these genuses from the ramification indices determined by the actions of
γ0, γ1, and γ∞ on the set of reduced inner Nielsen classes. The first two inertia
generators have prime order (3 and 2, respectively), so the number of their fixed
points (together with the degree of the cover) will determine their contribution to the
Riemann-Hurwitz formula; §8 of [FS04] aims at eliminating these fixed points.

However, γ∞ has infinite order in M4, so there is no a priori constraint on the
ramification it determines. The points lying over ∞ Fried calls cusps, and these
naturally correspond to the orbits of 〈γ∞〉 acting on the reduced inner Nielsen classes.
The cusp width (i.e. ramification index) of the cusp represented by an element g =
(g1, g2, g3, g4) of Ni (G,C)in equals the order of g2g3 (denoted by (g)mp) divided by 1,
2, or 4, this divisor being the cardinality of the intersection g〈q2〉 ∩ gQ′′. The middle
product (g)mp is an invariant of the cusp independent of the representative g chosen.
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The cusps are broken into three types. The non-p′ cusps are those for which p

divides the middle product (g)mp, while the p′ cusps are those for which p doesn’t
divide the middle product. The third type, the g-p′ cusps, form a subset of the
second and consists of those cusps for which a (equivalently, all) representative(s)
g = (g1, g2, g3, g4) satisfy: 〈g1, g4〉 and 〈g2, g3〉 are groups of order prime to p.

Lemma 5.3. — Let ϕn : n+1
p G̃ � n

p G̃ be the canonical cover. Let g be an element
of n+1

p G̃. If p divides the order of ϕn(g) then the order of g is p times the order of
ϕn(g).

Proof. — It suffices to prove this when ϕn(g) has order p. Then 〈ϕn(g)〉 is a copy of
the cyclic group Cp inside n

p G̃. The cover ϕ−1
n (Cp) � Cp is projective by Lemma 3.1,

and so must map surjectively onto the Frattini cover Cp2 � Cp. Every element of
Cp2 mapping onto φn(g) has order p2 and g must map to one of these elements and
hence have order at least p2. Since gp ∈ Mn, g has order at most p2.

This, combined with the Branch Cycle Argument [De04, 1.5], is what lies behind
Theorem 2.6 in Dèbes’ lecture notes [De04]. It also shows that the cusp width of a
non-p′ cusp will always be a factor of p greater than the cusp width of its image in
the level below: Fried’s Frattini Cusp Principle 1 [F04].

Every g-p′ cusp has a g-p′ cusp lying over it. Furthermore, for any representative
(g1, g2, g3, g4) of such a cusp, the restriction M ′ of the p-Frattini module to 〈g2, g3〉 will
be semi-simple and its isomorphism class will be determined by the numbers #S(Mn),
for which we have recursive formulae (cf Fact 4.3). Analysis of the cusps immediately
lying over this cusp relies only on studying the split extension M ′>�〈g2, g3〉, as does
classifying the cusp type of perturbations (g1, ag2a

−1, bg3b
−1, g4), where a and b are

elements of M ′.
What are the types of the cusps that lie over a p′ cusp which is not

g-p′? For this, we require more detailed information about the appearances of
111 in the composition series of the p-Frattini module; some of the most important
appearances are those that can occur at the top of a composition series. To end, let
me remind you of the definition of the elementary abelian p-Schur multiplier of G:
this is the quotient of M0 by the smallest submodule N such that all elements of G

act trivially on M0/N .

A

The Gruenberg-Roggenkamp equivalence

For every object f : H � G of CRG(G), choose a transversal t, a function t :
G → H such that f ◦ t is the identity on G and t(1) = 1.(1) Similarly, for every

(1)Set theorists might object to making a choice on a proper class. To do this rigorously, create a new

category whose objects are all ordered pairs with the first coordinate an object from CRG(G) and
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object c : N � ωRG of CRG(ωRG), choose an R-module splitting of c, an R-module
homomorphism s : ωRG → N such that c ◦ s is the identity on ωRG.

Define a functor Φ : CRG(G) → CRG(ωRG) as follows. Let f : H � G be a cover
of G with transversal t. Let K be the kernel of f , an R-module. Let N be the R-
module K × ωRG; this becomes an RG-module when the action of an element h ∈ G

is specified as follows:

h

⎛
⎝k,

∑
g∈G

agg

⎞
⎠ :=

⎛
⎝t(h)k +

∑
g∈G

ag

(
t(h)t(g)t(hg)−1

)
,
∑
g∈G

aghg

⎞
⎠ .

Projection onto the second coordinate is a cover Φ(f) of ωRG with obvious R-module
splitting. Suppose we have covers f1 : H1 � G and f2 : H2 � G and a morphism ϕ :
H1 → H2 between them; let t1 and t2 be the respective transversals. The morphism
Φ(ϕ) is defined as follows:

Φ(ϕ)

⎛
⎝k,

∑
g∈G

agg

⎞
⎠ :=

⎛
⎝ϕ(k) +

∑
g∈G

ag

(
ϕ(t1(g))t2(g)−1

)
,
∑
g∈G

agg

⎞
⎠ .

Now define a functor Ψ : CRG(ωRG) → CRG(G). Let c : N � ωRG be a cover with
R-module splitting s. Let K be the kernel of c. The group structure on K × G is
defined by:

(m, g)(n, h) := (m + gn + (gs(h − 1) − s(g(h − 1))) , gh) .

Projection onto the second coordinate is a cover of G with obvious transversal. Sup-
pose we have covers c1 : N1 � ωRG and c2 : N2 � ωRG and a morphism ψ : N1 → N2

between them; let s1 and s2 be the respective R-module splittings. The morphism
Ψ(ψ) is defined as follows:

Ψ(ψ)(m, g) := (ψ(m) + (ψ(s1(g − 1)) − s2(g − 1)) , g) .

The functors Φ and Ψ form Gruenberg-Roggenkamp’s categorical equivalence.

References

[BF02] P. Bailey and M. Fried, Hurwitz monodromy, spin separation and higher levels of
a Modular Tower, Arithmetic fundamental groups and noncommutative algebra,
PSPUM vol. 70 of the American Math. Society (2002), 79–220.

[Be98] D. J. Benson, Representations and cohomology. I. Basic representation theory of fi-
nite groups and associative algebras. Second edition. Cambridge Studies in Advanced
Mathematics, 30, Cambridge University Press, Cambridge, 1998.
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