§3. MAIN THEOREM; GROUP THEORY AND EXCEPTIONAL CASES: From Proposition 2.3 we have only to show that $g_g(sol) \cap g_g(prim)$ is empty for g>6. Excluding Theorem 3.4, we assume in this section that g>1.

§3.1. PROOF OF THE MAIN THEOREM: Suppose that $G \in \mathfrak{G}_g(\text{prim})$. Riemann's existence theorem says that there exists an integer r and $\sigma \in \mathfrak{S}_n^r$ with properties (1.1).

Suppose that there is a constant \propto such that (3.1) ind(σ_i) $\geq \propto$ n, i=1,...,r.

According to Principle 2.2, $r \ge 3g$. Therefore an application of (1.2) gives (3.2) $2(n-1)/(3 \le n-2) \ge g$ with equality if and only if $ind(\sigma_i) = \le n$, i=1,...,r.

Proposition 3.1: In the above formula, if G is a primitive subgroup of S_n with a minimal normal subgroup N that is abelian, then $n=p^e$ for some prime p. If $p\neq 2$ we may take $\alpha=1/3$ in (3.1). If p=2 then we may take $\alpha=1/4$. In particular, this applies to the case that Ge9 (sol)N9 (prim).

The exceptional values for (g,n) in (3.2), with g>1, are (6,4),(5,4),(4,4),(4,3),(3,3),(3,4),(3,8) and (2,n) for any primepower n.

Proof: Let G be a transitive subgroup of S_n . For $\sigma \epsilon G$ the following hold:

(3.3) a) if σ has no fixed points, then ind(σ) \geq n/2; and

b) $ind(\sigma) \ge ind(\sigma^k)$ for any integer k.

Now assume that G is primitive, that H is the stabilizer of a point in the permutation representation and that N, a minimal normal subgroup,

is abelian. It is well known (e.g., [Bu]) that $p^e=n$, that the permutation action of H is equivalent to the faithful and irreducible action of H by conjugation on the elements of N; and that $G=N\times SH$ (semidirect product). Thus if $\sigma \in G$ has a fixed point, then σ is conjugate to an element of H, and the permutation action of H is equivalent to the conjugation action on N.

From (3.3) we prove the statements about \propto if we show that for $\sigma\epsilon H$ of prime order, say q,

(3.4)
$$ind(\sigma) \ge (q-1)(p-1)n/qp$$
.

But $ind(\sigma)$ is n minus the number of orbits of σ acting by conjugation on N. By the class equation the cardinality of these orbits is

$$\left|\left. \mathsf{C}_{N}(\sigma)\right| + (\mathsf{n} - \left|\left. \mathsf{C}_{N}(\sigma)\right|\right.) / \mathsf{q} \underline{>} \; (\mathsf{p}^{e} - \mathsf{p}^{e-1}) / \mathsf{q}.$$

From this (3.4) follows.

Consider the exceptional cases for (g,p^e) from the inequality (3.2), $2(n-1)/(3 \propto n-2) \geq g$, where $\propto n$ is the right side of (3.4). For n odd we may replace \propto by 1/3. Thus $g \leq 2(n-1)/(n-2)$ gives (2,any odd primepower), (3,3) and (4,3).

For n even we may replace \propto by 1/4. Thus $g \le (2^{e}-1)/(3 \cdot 2^{e-3}-1)$ gives (g,4), g=3,4,5,6, (3,8) and (2,any power of 2). \square

Remark: Let Ω denote those permutation groups G that have a normal subgroup N (not necessarily abelian) such that G=NH and the restriction of the permutation action to N is equivalent to the regular representation of N. Define $\mathfrak{G}_g(\Omega)$ in a manner analogous to the above. With slight modifica-

tion, the proof of Proposition 3.1 can be improved to show that $\mathbb{G}_g(\Omega) \cap \mathbb{G}_g(\mathrm{prim}) \text{ is empty for } g{>}6. \ \square$

§3.2. FINITENESS OF $|g_g(\text{SOL}) \cap g_g(\text{PRIM})|$ FOR g > 1: Since S_3 and S_4 are solvable, Principle 2.5 tells us that the cases of form (g,3) or (g,4) in Proposition 3.1 actually are exceptions to the Main Theorem if and only if $n(g) \le 3,4$ respectively. For example n(6) = [9/2] = 4. This leaves the cases

- (3.5) a) (2,any prime power); and
 - b) (3,8).

The next lemma eliminates (3.5) b) as a possibility and the theorem following it cuts down to a finite number the possible exceptional cases that appear under (3.5) a). After this our only concern in describing $\mathfrak{G}_g(\text{sol})\cap\mathfrak{G}_g(\text{prim}) \text{ explicitly for g>1 is with the finite number of cases}$ left over when g=2. In §4 we delineate the possible branch cycles which

Lemma 3.2: Let $G=(\mathbb{Z}/2)^{e_{\times}S}H$ with H a solvable subgroup of $GL(e_{\times}\mathbb{Z}/2)$ acting irreducibly on $(\mathbb{Z}/2)^{e}$ with $e^{\times}2$. Let T be the subgroup of H generated by transvections. If $T\neq 1$, then the irreducible T submodules of $(\mathbb{Z}/2)^{e}$ are 2-dimensional. In particular, if H contains a transvection, then e is even.

arise from the portion of the list remaining from Theorem 3.3.

Finally, if e=3, then 7 divides the order of H. This excludes the cases of (g,n)=(2,8) or (3,8) from being exceptions to the Main Theorem.

Proof: We divide the proof into 4 parts, the first 3 of which consider a minimal normal subgroup A of H contained in T.

Part 1. Decomposition of N under a minimal normal subgroup of H. Let A be as above. Then A is an abelian p-group for some prime p. Decompose $N=(\mathbb{Z}/2)^e$ as $V_1 \oplus V_2 \oplus \cdots \oplus V_t$ with V_i an irreducible A module, i=1,...,t. In-

deed, if V_1 is a minimal A submodule, since H acts irreducibly on N, the images of V_1 under H form such a decomposition with $h(V_i)=V_i$ or $h(V_i)\cap V_i$ empty for each i and heH. Suppose that $(\mathbb{Z}/2)^e$ has a 1-dimensional T submodule, <v>. Since T is normal in H, then $h^{-\frac{1}{2}}h(v)=v$ for each $\tau \in T$ and heH. Conclude that H doesn't act irreducibly on N. This argument works with T replaced by any normal subgroup of H, in particular A.

Part 2. Reduction to the case H=T and A is cyclic acting irreducibly on N. If τ is a transvection, it fixes a hyperplane of N and therefore τ fixes a hyperplane of V_j . Thus $\tau(V_j)=V_j$, i=1,...,t, and we may reduce to the case

Thus all of the irreducible A and T submodules are of dimension at least

2.

that H=T and N=V $_1$ =V. Let ($\mathbb{Z}/2$)[A] denote the image of the group ring of A in End(V). This is a field. Thus the elements of A represent a subgroup

of the multiplicative group of this field. Such a subgroup must be cyclic, and therefore A is a cyclic group.

Part 3. H is dihedral and $\dim(V)=2$. Denote the normalizer of $(\mathbb{Z}/2)[A]$ in GL(V) by K (it includes the action of T=H). Since this acts as automorphisms of the finite field $(\mathbb{Z}/2)[A]$, the induced map $K \to Aut((\mathbb{Z}/2)[A])$ has image a cyclic group. Conclude that T/A is cyclic. Since it is generated by involutions it is of order 2 (or 1). Thus H is dihedral, and for any involution τ we check that $\dim([\tau,V])=\dim(V)/2$. If, however τ is a transvection, then $\dim([\tau,V])=1$. This gives $\dim(V)=2$ and concludes the first two sentences of the lemma. If we now return to the general case, the argument of Part 1 shows that (if T is nontrivial) N is a direct sum of irreducible 2-dimensional T submodules. In particular, e is even.

Part 4. The case e=3. From the above H contains no transvections. The order of $GL(3,\mathbb{Z}/2)$ is $7\cdot 6\cdot 4$. Let A be a minimal normal subgroup of H. Of course, this contains a copy of S_4 induced from its permutation action If A stabilizes a line then $C_N(A)\neq 0$, which implies that $C_N(A)=N$. This con-

tradiction to the faithful action of H on N shows that A acts irreducibly on N. By Part 2 above, A is cyclic, and therefore |A| = 7 and |H| = 7 or 21. In this case every involution is in N and it has no fixed points: its index is at least 4. An element of order 7 in H has index 6 and an element of order 3 has index 4. We exclude the case (3.5) b) by noting that $r \ge 9$. Thus the sum of the σ_i 's, which should be 2(8+3-1)=20, must exceed 36. For the case (g,n)=(2,8) we get a similar contradiction with $r \ge 6$.

Theorem 3.3: Exclude the well known case n=2 and $G=S_2$ Then the only possible exceptional (solvable) groups that appear as the group of the Galois closure of some map of the generic curve of genus 2 to \mathbb{P}^1_Z occur with $n=p^e$ and $G\subset S_p$ a primitive subgroup as follows:

$$\begin{array}{l} (3.6) \ a) \ p=5=n, \ G=D_{10}; \\ \\ b) \ p=3=n, \ G=S_3; \\ \\ c) \ p=3, \ n=9, \ G=(\mathbb{Z}/3)^{2_\chi S}D_8; \\ \\ d) \ p=3, \ n=9, \ G=(\mathbb{Z}/3)^{2_\chi S}GI(2,3); \\ \\ e) \ p=2, \ n=4, \ G=S_4 \ \ ; \ and \\ \\ 1) \ p=2, \ n=16, \ G=(\mathbb{Z}/2)^{2_\chi}(\mathbb{Z}/2)^{2_\chi S}((S_3^{\chi}S_3)^{\chi S}(\mathbb{Z}/2). \end{array}$$

Proof: From Principle 2.2, $r \ge 6$, and in our previous notation, the Riemann-Hurwitz formula gives, $\sum_{i=1}^{r} ind(\sigma_i) = 2n+2. \text{ Apply } (3.4). \text{ For } p \ge 7, ind(\sigma_i) \ge (3/7)n. \text{ Therefore, } \sum_{i=1}^{r} ind(\sigma_i) \ge (18/7)n \ge 2n+4 \text{ and there are no examples. We break the proof into two parts according to n odd or even.}$

Part 1. n is odd. If p=5 a similar computation shows that

 $\sum\nolimits_{i=1}^r \operatorname{ind}(\sigma_i) \ge 2n + 2n/5 > 2n + 2 \text{ if } n > 5. \text{ If } n = 5, \text{ equality implies } \operatorname{ind}(\sigma_i) = 2,$

i=1,...,6. The only solvable subgroup of S_5 generated by such elements is D_{10} where σ_i is a product of two disjoint 2-cycles, i=1,...,6.

For p=3, consider the possibilities for the action of σ on the vector space N as in the proof of Proposition 3.1. If σ fixes no points, then $\operatorname{ind}(\sigma) \geq n/2$. Otherwise, we may assume for the index calculation that $\sigma \in H \subset GL(e,\mathbb{Z}/3)$. If σ is an involution, then $v + \sigma(v)$ is fixed by σ for each $v \in N$. These fixed vectors form a subspace N_1 . There are 2 possibilities:

(3.7) a) $\rm N_1$ is a hyperplane (i.e., σ is a reflection in $\rm N_1$), and

$$ind(\sigma)=(3e-3e^{-1})/2=n/3$$
; or

b) the fixed subspace of σ has order no more than 3^{e-2} elements, and $ind(\sigma) \ge (3^{e}-3^{e-2})/2 = n/3+n/9 = 4n/9$.

If σ is not an involution, but σ is a transvection (i.e., σ fixes a hyperplane N₁ and $\sigma(v)-v\epsilon N_1$ for each $v\epsilon N$) then $ind(\sigma)=2(3e-3e^{-1})/3=4n/9$.

Otherwise, $\operatorname{ind}(\sigma) \ge n/2$. Clearly, if n>9, either all σ_i 's are reflections and the sum of the indices is $\operatorname{rn}/3 \ne 2(n+1)$ for all r; or at least one of the σ_i 's is not a reflection and, since $r \ge 6$, the sum of the indices exceeds 2(n+1). Here are the actual branch cycle possibilities for n=p=3, $G=S_3$:

(3.8) a) r=6, four of the $\sigma_{\rm i}$'s are 2-cycles and two are 3-cycles;

- b) r=7, six of the $\sigma_{i}\mbox{'s}$ are 2-cycles and one is a 3-cycle; and
- c) r=8, and all of the $\sigma_{\rm i}$'s are 2-cycles.

For n=9 the σ_i 's that are reflections have index 3, transvections have index 4 and multiplication by -1 on N has index 4. Suppose that σ and τ are involutions that generate D₈, with $\sigma\tau$ of order 4. We may assume that the action of σ on $(\mathbb{Z}/3)^2$ is given by mapping (α,β) to $(-\alpha,\beta)$, and similarly, that the action of τ is given by mapping (α,β) to (β,α) . Here are the actual branch cycle possibilities for n=9, $G=(\mathbb{Z}/3)^2\times SD_8$:

(3.9) r=6, four of the σ_i 's are reflections and the other two are involutions of the form $(v;(\sigma\tau)^2)$ with $v \in \mathbb{N} - \{(0,0)\}$.

In order to list the branch cycle possibilities for n=9, $G=(\mathbb{Z}/3)^2\times ^{S}G_1 \text{ with } G_1=GL(2,\mathbb{Z}/3) \text{ or } SL(2,\mathbb{Z}/3) \text{ note that } SL(2,\mathbb{Z}/3) \text{ con-}$

tains no reflections. Thus it is ruled out since, as above, at least four of the σ_i 's must be reflections. Consider the transvection

 $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}$, a matrix that is the product $\sigma \tau$ from D_8 above.

Also, A and B generate $SL(2,\mathbb{Z}/3)$. Since σ and τ have determinant -1, σ,τ and α generate $GL(2,\mathbb{Z}/3)$. We therefore have the possibility for (3.6) d) that

(3.10) r=6, two of the σ_i 's project in $GL(2,\mathbb{Z}/3)$ to σ , two of them to τ , and two of them to A.

We have said enough about the odd degree case for now.

Part 2. p=2. If n=4, then the sum of the indices of the σ_i 's must be 10. Since r≥6 this rules out the possibility that each σ_i has index at least 2, and therefore it isn't possible that $G=A_4$. As in (3.8) there is a long, but obvious list of the possibilities. The extremes for r are of the most interest to us:

- (3.11) a) r=10, all of the σ_i 's are 2-cycles; and
 - b) r=6, two of the σ_i 's are 2-cycles and the remaining four are some combination of 3-cycles and products of two 2-cycles.

Now assume that $n=2^e$ with $e\ge 4$ (Lemma 3.2 excludes the possibility of e=3). Use the notation of Lemma 3.2. The following list indicates possibilities for the indices of elements $\sigma \in G$:

- (3.12) a) if σ is a transvection, then σ fixes 2^{e-1} vectors and ord(σ) is 2 (over $\mathbb{Z}/2$), so ind(σ)=n/4;
 - b) if $\operatorname{ord}(\sigma)=3$, then $\operatorname{ind}(\sigma)\geq (2/3)(2^{e}-2^{e-2})=n/2$; and
 - c) if $\operatorname{ord}(\sigma)=2$ and not a), then $\operatorname{ind}(\sigma)\geq 3n/8=(2^{e}-2^{e}-2)/2$.
 - d) if $ord(\sigma) \ge 5$, then $ind(\sigma) \ge 5n/8 = (below)$;
 - e) if $ord(\sigma)=4$, $ind(\sigma)\geq n/2$ and if σ^2 isn't a transvection, then $ind(\sigma)\geq 5n/8$ (below); and
 - f) if $\operatorname{ord}(\sigma)=3$ and $|[\sigma,N]| \ge 16$, then $\operatorname{ind}(\sigma) \ge 2(2^e-2^{e-4})/3=5n/8$ (below).

The remainder of the proof is organized into five points of which one covers expansion on (3.12) d) and e), three cover a list of possibilities on the

number of transvections among the σ_{i} 's and the final gives the example in which e=4.

Point 1. (3.12) d) and e). First consider (3.12) d). If $\operatorname{ord}(\sigma)$ is an odd prime p then $\operatorname{ind}(\sigma)=(p-1)(2^e-2^f)/p$ where f is the dimension of the fixed point space of σ . Since $\operatorname{GL}(3,\mathbb{Z}/2)$ has order relatively prime to 5, if p=5, then e-f>4. Similarly, since $\operatorname{GL}(2,\mathbb{Z}/2)$ has order relatively prime to p for p>3, then e-f>3 if p>5. Thus in these cases $\operatorname{ind}(\sigma) \ge 3n/4$. Applying (3.3) b) we are reduced to the case that $\operatorname{ord}(\sigma)$ is divisible only by the primes 2 and 3, and if suffices to establish this in the case that $\operatorname{ord}(\sigma)=6.8$ or 9.

In the case that $\operatorname{ord}(\sigma)=9$ we may count the number of 9-cycles by similar thinking to the above: The number of 9 cycles is the number of 3-cycles of σ^3 . So there must be an integer t such that σ^3 has $(2^e-2^t)/3$ 3-cycles, which come together in groups of three from the 9-cycles of σ . Thus $\operatorname{ind}(\sigma) \ge 8(2^e-2^t)/9$ where t is the minimal integer such that 2^e-2^t is divisible by 9. That is t=e-6, and (3.12) d) follows from (8/9)(63/64) > 3/4. For the other two cases we use the following formula. If $\operatorname{orb}(\sigma)$ is the number of orbits of σ and $\operatorname{ord}(\sigma)=d$, then

(3.13) a) orb(
$$\sigma$$
)= $\left(\sum_{i=1}^{d} |Fix(\sigma^i)|\right)/d$.

This follows from Frobenius reciprocity in the inner product formula $(\chi,1)_{<\sigma>}=(1,1)_{\text{M}},$ where χ is the character of the permutation represen-

tation of $<\sigma>$ and M is the subgroup that stabilizes an integer in this representation.

If d=6, then orb(σ)=(2 | Fix(σ) | +2 | Fix(σ^2) | + | Fix(σ^3) | +n)/6. If we write σ in rational canonical form it is clear that $| \text{Fix}(\sigma) | \leq n/8$, $| \text{Fix}(\sigma^2) | \leq n/4$ and $| \text{Fix}(\sigma^3) | \leq n/2$. Therefore orb(σ) $\leq 3n/8$ and ind(σ)=n-orb(σ) $\geq 5n/8$. The exact same argument applied in the case that σ is of order 8 gives ind(σ)=n-orb(σ) \geq (11)n/16.

Now we consider e). Apply the above for σ of order 4 to get $\operatorname{orb}(\sigma)=(2\left|\operatorname{Fix}(\sigma)\right|+2\left|\operatorname{Fix}(\sigma^2)\right|+n)/4\leq n/2$. But, if σ^2 isn't a transvection, then $\left|\operatorname{Fix}(\sigma^2)\right|\geq n/4$ and $\left|\operatorname{Fix}(\sigma)\right|\geq n/8$. Conclude e).

Point 2. Existence of at least 1 transvection and 2 nontransvections among the σ_j 's. Since r≥6 and e>3, if there are no transvections among the σ_j 's the sum of the indices of the σ_j 's is at least 2n+(n/4)>2n+2. Conclude that there is at least one transvection. From Lemma 3.2, e is even. We treat the case e=4, as in (3.6) f) in Point 5. Assume now that e≥6.

Let T be the (normal) subgroup of H generated by transvections. If all but one of the σ_i 's are transvections, then H=T and Lemma 3.2 implies that e=2.

Point 3. The impossibility of exactly 2 nontransvections among σ_{j} 's. If exactly two aren't transvections, then H/T is generated by a single element, and so is cyclic. Suppose that |H/T|=2. From Lemma 3.2 the irreducible submodules of $(\mathbb{Z}/2)^{e}$ would be of dimension at most 4, contrary to

the irreducibility of the action of H and e>5. Therefore |H/T| = m>2. Thus these two nontransvections have order at least m.

If $\sigma=\sigma_{i}$, then $H\subseteq <T,\sigma>$, so σ must transitively permute the irreducible T submodules of N. Also, no two T submodules of N are T-isomorphic (a given transvection can act nontrivially of only one irreducible submodule). Thus $|[\sigma,N]| \geq 16$. By (3.12) d), e) and f), $ind(\sigma) \geq 5n/8$ and the sum of the indices of the σ_{i} 's must be at least 4(n/4)+2(5/8)n>2n+2.

Point 4. Impossibility of 3 nontransvections among σ_j 's. Since the sum of the indices of the σ_j 's is $\not\equiv 0 \mod 4$, one of the nontransvections must have index $\not\equiv 0 \mod 4$. We show that this nontransvection must have index at least (5)n/8.

If not, then (3.12) d) implies that $\sigma=\sigma_i$ has order at most 4. We list the cases. If $\operatorname{ord}(\sigma)=2$, the Jordan canonical form of σ shows that σ fixes at least $2^{e/2}$ elements so that, since $e\geq 6$, $\operatorname{ind}(\sigma)\equiv 0 \mod 4$. If $\operatorname{ord}(\sigma)=3$, then $|\operatorname{Fix}(\sigma)|=1$ and $\operatorname{ind}(\sigma)=2(2^e-1)/3>5n/8$. Finally, if $\operatorname{ord}(\sigma)=4$, then $-\operatorname{ind}(\sigma)\equiv\operatorname{orb}(\sigma)=(2|\operatorname{Fix}(\sigma)|+2|\operatorname{Fix}(\sigma^2)|+n)/4\mod 4$ from Point 1. If σ^2

is a transvection, then σ has exactly one Jordan block of size at most 3, and so $|\operatorname{Fix}(\sigma)|$ is a multiple of 8 (and $|\operatorname{Fix}(\sigma^2)| = n/2$). Hence $\operatorname{ind}(\sigma) \equiv 0$ mod 4. By (3.12) e), $\operatorname{ind}(\sigma) \geq 5n/8$ as claimed. Therefore (again the formula of Point 1) the sum of the indices of the σ_i 's is at least (3n/4)+6n/8+5n/8=2n+n/8>2n+2.

Point 5. e=4. From the first part of the proof of Lemma 3.2 conclude that the subgroup T of H generated by transvections acts as $H_1 = S_3 \times S_3$ acting on $N = (\mathbb{Z}/2)^2 \times (\mathbb{Z}/2)^2$ through action of S_3 on $(\mathbb{Z}/2)^3/<(1,1,1) > \equiv (\mathbb{Z}/2)^2$ in the standard degree 3 permutation representation. Note that in the argument of Point 2 the possibility of |H/T| = 2 was left open when e=4. It is easy to conclude that H is $S_3 \times S_3 \times S_2 \times S_3 \times S$

§3.3. INSPECTION OF $|\mathfrak{G}_{g}(\mathsf{SOL})\cap\mathfrak{G}_{g}(\mathsf{PRIM})|$ FOR g=1: The last theorem of this section shows that in the case g=1, the elements of $\mathfrak{G}_{g}(\mathsf{sol})\cap\mathfrak{G}_{g}(\mathsf{prim})$ are groups whose degrees n are either of the form 2°, 3°, 5° or 7°. Of course, as explained in the introduction, we expect that $\mathfrak{G}_{1}(\mathsf{sol})\cap\mathfrak{G}_{1}(\mathsf{prim})$ is actually finite. We have one further duty in this case before we go to Theorem 3.4. That is to explain the relation between $\mathfrak{G}_{1}(\mathsf{sol})\cap\mathfrak{G}_{1}(\mathsf{prim})$ and $\mathfrak{G}_{1}(\mathsf{sol})$ considering that Proposition 2.3 assumes that $\mathfrak{g}>1$ (cf. Acknowledgements).

Indeed, in diagram (1.4) we must allow one further possibility. If

(3.14) $\varphi: X_{\mathbf{m}} \to Y \to \mathbb{P}^1_Z$, with $X_{\mathbf{m}}$ the generic curve of genus 1,

then either Y is of genus 1 and $\times_{\mathbf{m}} \to Y$ is an unramified Galois cover with abelian group of rank at most 2, or Y is of genus 0. In the former case Y is itself a generic curve of genus 1 (not necessarily isomorphic to $\times_{\mathbf{m}}$). Recall that genus 1 curves (over an algebraically closed field) have the structure of an abelian group. With no loss we may assume that the origins of the group structures for $\times_{\mathbf{m}}$ and Y have been chosen so that $\times_{\mathbf{m}} \to Y$ is an isogeny of elliptic curves. In particular, this is a Galois cover with group a quotient of $(\mathbb{Z}/u)^2$ for some integer u [L; p.24]. We explain the implications for the relationship between $\mathfrak{G}_1(\mathrm{sol})\cap\mathfrak{G}_1(\mathrm{prim})$) and $\mathfrak{G}_1(\mathrm{sol})\cap\mathfrak{G}_1(\mathrm{prim})$ and $\mathfrak{G}_1(\mathrm{sol})\cap\mathfrak{G}_1(\mathrm{prim})$ and $\mathfrak{G}_1(\mathrm{sol})\cap\mathfrak{G}_1(\mathrm{prim})$) and $\mathfrak{G}_1(\mathrm{sol})\cap\mathfrak{G}_1(\mathrm{prim})$

Suppose that $G_1 \in \mathfrak{G}_1$ is a subgroup of the wreath product of V, a quotient of $(\mathbb{Z}/u)^2$ for some integer u, and a group G (i.e., a subgroup of $V_k^{\times S}G$ via a permutation representation of G of degree k). We say that G and G_1 are elementary wreath equivalent. This generates an equivalence relation. From the above comments if $G \in \mathfrak{G}_1$ (resp., \mathfrak{G}_1 (sol)), then it is a subgroup of a series of wreath products formed from groups $G_1, ..., G_V$

where G_1 , is elementary wreath equivalent to an element of $\mathfrak{G}_1(\operatorname{prim})$

 $(\text{resp., } \textbf{g}_1(\text{sol}) \cap \textbf{g}_1(\text{prim})) \text{ and } \textbf{G}_i, \epsilon \textbf{g}_0(\text{prim}) \text{ } (\text{resp., } \textbf{g}_0(\text{sol}) \cap \textbf{g}_0(\text{prim})),$

i=2,...,v. We are willing to use the elementary formula (3.15) from the still incomplete [GTh] on the principles that this will appear right up front in that paper and that this use will help clarify the relationship between this paper and that.

Theorem 3.4: The only possible degrees of primitive solvable groups that appear as the group of the Galois closure of some map of the generic curve of genus 1 to \mathbb{P}^1_Z occur with $n=p^e$, with p equal to 2,3,5 or 7.

Proof: From Principle 2.2, $r \ge 4$, and in our previous notation, the Riemann-Hurwitz formula gives, $\sum_{i=1}^{r} \operatorname{ind}(\sigma_i) = 2n$. An application of (3.4)

here when g=1 falls short of giving us the opening argument of Theorem 3.3. Instead we borrow a more precise statement from [GTh]. If $|\sigma|=d$, then

- (3.15) a) ind(σ)≥ (d-1)(p-1)n/d·p if σ has fixed points; and
 - b) ind(σ) \geq (p-1)n/p if σ has no fixed points.

We divide the remainder of the proof into two parts.

Part 1. Reduction to the case that r=4 and $ord(\sigma_r)=2$, i=1,2,3,4. First Assume that at least one σ_i , say σ_r , has order greater than 2 and, of course, that p>7. Therefore,

$$\sum_{i=1}^{r} ind(\sigma_{i}) \ge (3(p-1)/2p+2(p-1)/3p)n > 2n+2$$

unless p<13; and in the case p=13, $|\sigma_i|=2$, i=1,2,3, and $|\sigma_4|=3$ and each σ_i leaves a hyperplane fixed. But in this case $\prod_{i=1}^r \det(\sigma_i) \neq 1$, contrary to $\prod_{i=1}^r \det(\sigma_i)=1$. Actually the same formula works for the case p=11, with the observation that since $11\neq 1 \mod 3$, (3.14) gives an improved bound for $|\sigma_4|$. Conclude that if p exceeds 7, then all of the σ_i 's are of order 2.

Part 2. Conclusion. Use the above and that $\sigma_1 \cdot \sigma_2 \cdot \sigma_3 \cdot \sigma_4 = 1$ to conclude that $\sigma_1 \cdot \sigma_2$ generates a normal subgroup of G (which, because of primitivity, cannot fix an integer of the representation), and therefore that G is the dihedral group of order 2p. Finally, this implies that $\operatorname{ind}(\sigma_i) = (p-1)/2$, contrary to the sum of the indices of the σ_i 's equal to 2p.