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Regular realizations of p-projective quotients and modular curve-like
towers

M. D. FrIED

Abstract. This exposition on Modular Towers (MT s) shows how the Regular Inverse
Galois Problem (RIGP) generalizes modular curves by considering all Frattini extensions
of a given p-perfect finite group G. The result is towers of spaces generalizing modular
curve towers — minus their cusps : {Y1(p"1)}52, is a case with G = D, (p odd).

The Main Conjecture on MT s is that there are no rational points at high levels
[LUM]. If true the difficulty in the RIGP is because the context generalizes the Mazur-
Merel results. More so, A. Cadoret has shown the Strong Torsion Conjecture (STC)
implies the Main Conjecture [STMT]. Though the STC is known only for dim. 1, there
has been serious progress on the Main Conjecture. Ingredients include a theory of cusp
types on a M'T. We understand those projective systems of tower components that have
properties resembling modular curves through two tools:

e The Fried-Serre lifting invariant generalizing an invariant for the spin covers of
alternating groups [AGLI]; and
e aresult of T. Weigel that explains towers levels through a group extension prob-
lem applied to a p-Poincaré duality group [We].
Here is a list of the sections.
. Use of conjugacy classes
. Is the RIGP really so hard?
. The RIGP realm using virtually pro-p groups
. Cusps on curve components (r = 4)
. Compare modular curve cusps with MT cusps
. Where is the Main Conjecture with r = 47

SO W N

The following were not in the talk, but are an addition to the pdf talk file [WS].
7. What happens in real MT levels!
8. Generalizing Serre’s OIT and the g-p’ conjecture
App. A: Fried-Serre Formula for Spin-Lift Invariant
App. B: sh-incidence Matrix for (A4, Cy32)

The I(nverse)G(alois)P(roblem) for G: Is finite group G the Galois group of an
extension of every number field?

The R(egular)IGP for G: Is there one Galois extension Lg/Q(z) with group
G containing only Q for constants? From Hilbert’s irreducibility Theorem, RIGP
(for G) = 1IGP (for G). Further, beyond the solvable case, the RIGP has
provided most all the successes through the braid monodromy method.

1. USE OF CONJUGACY CLASSES
We say g def (91,--.,9r) € G" generates with product-one if

def
(g1,...,9r) = G and Hgyugr = I(g) = 1.

Also, g defines a set C of conjugacy classes in G. Given C, g € C means g defines
C. Such g form the Nielsen class Ni(G, C) of (G, C).
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In C = {Cyq,...,C,} some classes may appear several times: multiplicity counts;
order does not.

1.1. R(iemann’s)E(xistence)T(hm). A regular realization Lg/Q(z) has r > 2
branch points = {z1,..., 2z} (z over which are less than [Lg : Q(z)] places): z; —
conjugacy class C; of inertia gen. from a clockwise small circle around z;.
RET: G(Lg/Q(z)) = G = some g € C generates G with product-one.
Since the realization is over Q, C is a rational union (its union is closed under
putting all elements in it to powers prime to orders of elements in C).

1.2. An addition to [FrV, Main Thm.]

Theorem 1.1 (Branch-Generation Thm.). Assume G is centerless and C* is a
distinct set of (nonidentity) classes in G. An infinite set I o~ indexes distinct
absolutely irreducible Q varieties Ra,c def Re.c0 = {Hitielg o with:
o i € Ig c- — ;C, arational union of r; conjugacy classes in G with support
in C*.
e The RIGP holds for G with conjugacy classes C supported in C* & i €
Ig ¢~ with C =;C and H; has a Q point.

1.3. Using Nielsen classes. Realizations come from augmenting existence of
Ra,c~ with info on H;, ¢ € Ig.c~.

The reduced space Hzr-d: Equivalence field extensions under change of variables
2+ a(z), a € PGLy(C). Dimension of Hid is r; — 3.

1.4. D, and A, cases. G = D+, p odd, C* = {Cs} (class of involution):
Then i +— Coyr; is one-one and onto r; > 4 even. Also, Hird identifies with the
space of cyclic p*t! covers of hyperelliptic jacobians of genus TT*Q
(Fried-Serre) G = A,, with C* = {C3}, class of 3-cycles:

Then i — Cgr; with r; > n is two-one. Denote indices mapping to r by zf
Covers in 'H,+ are Galois closures of degree n covers ¢ : X — P! with 3-cycles for
local monodromy. Write divisor (d¢) of differential of ¢ as 2Dy. Then, ¢ € H,+
(vesp. H,-) if the linear system of Dy has even (resp. odd) dim.; even (resp. odd)
0 characteristic. For r; =n — 1, i — Cgzr; is one-one.

2. Is THE RIGP REALLY SO HARD?

Dividing RIGP techniques into three cases shows how ¢ € Ig ¢~ on ;C affects
complexity of computation. Yet, it is diophantine reasons more than group theory
complexity that makes the RIGP hard.

1. When r; = 3, H:4 is a finite collection of (Q) points.

2. When r; = 4, H}4 is naturally an upper half-plane quotient and a cover of
the j-line, with meaningful cusp types.

3. No matter what is 7;, H; is a cover of U,,, projective r; space minus
its discriminant locus; can compare this with the (Galois) Noether cover
U™ — U,, (with group S,).
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2.1. Using #1. Rigidity is an effective sufficiency test for finding ¢ € I with
r; = 3. It requires only the character table of G to conclude the RIGP for G.

Problem: Rarely does this hold. Even for Chevalley groups, the method achieved
only special rank 1 groups over prime finite fields (Belyi) and some other special
simple groups by Matzat and Thompson.

2.2. Using #3. For many families of simple groups Thompson and Vélklein found
C* and used specific i € Ig,c+ (Thompson-tuples). Their H; — U, covers were
almost subcovers of U™ — U,.,. This gave many examples of simple G satisfying

RIGP.
Problem: This required much luck and great expertise on simple group series.

2.3. Virtues of using #2.

e H:4 is a curve with useful cusps from the moduli problem to compactify
it. Gives precise statements about these spaces.

e More groups (like all simple groups and all their Frattini covers) have
conjugacy classes producing this case than holds for #1.

e Combinatorial techniques allow computing the genus of these spaces, and
to identify the part of the Nielsen class they come from.

3. THE RIGP REALM USING VIRTUALLY PRO-p GROUPS

We use the virtually pro-p universal p-Frattini cover pé of G, for any prime
p||G| to see how the RIGP generalizes classical results for modular curves. If G is
centerless and p-perfect (no surjective G — Z/p), then pé = limeo i G, with:

e (G} also p-perfect and centerless; and
e G — G versal for all extensions ¢ : H — G with ker(¢)) a p-group of
exponent at most pk.

3.1. Add a restriction on Ramification. From Schur-Zassenhaus, if a conju-
gacy class is p’, then it has a unique lifts to a p’ class in Gy. So, if C consists of p’
classes, denote those lifted classes to GG, by the same notation. Here is a restrict
ramification condition depending on rg > 3:

Ram,,: For k > 0, use covers in Ni(Gj, Cy) with at most r¢ classes in Cg.

Question 3.1 (RIGP(G,p,rg) Question). Is there an ry so all Gy s satisfy the
RIGP from covers in Ram,?

3.2. How the Main Conjecture Arises.

Theorem 3.2 (Fried-Kopeliovic, 1997). If the conclusion of Quest. 3.1 is affir-
mative (for (G,p,r0)), then there are p' conjugacy classes C (no more than o) in
G, and a projective system {H), € Ra,.c}io, each having a Q point.

We call {H}.}52, a M(odular) T(ower) component branch (over Q).

Conjecture 3.3 (Main Conjecture). Given any MT component branch, and any
number field K, for k >> 0, H}(K) = 0.
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4. CUSPS ON CURVE COMPONENTS (r = 4)

Twist action of Hy = (g1, ¢2, g3) generatorson g € Ni(Gy,C)/G def

Ex.: g2: 9 (91,020395 ' 92, 9a)-
Level k Cusps: Cuy def (165", (q1q2q3)?, g2) orbits on Ni(Gj, C)™. Denote
(15", (q1923)%) by Q"

Ni(Gyg, C)™.

4.1. Why M, © H,/Q" is PSL,(2).

® (42 — Yoos

® ¢1G2qs (shift) — 1 (order 2).

® ¢1q2 — 7y has order 3, from braid relation ¢1¢2g1 = g¢2q1g2 mod Cuy and
Hurwitz relation 1 = q1¢293¢3q2q1:

= NRONRO = (9006003 = (q1g2)>.

4.2. From a component branch, what to compute.

e Nature of cusps and their widths (length of Cuy mod Q" orbits).
e How they fall in M, orbits and of what genera (Riemann-Hurwitz).

5. COMPARE MODULAR CURVE CUSPS WITH MT cusps

When r = 4, MT levels ( k£ > 0) are j-line covers, but rarely modular curves.
The following description of cusps is from [LUM, §3.2].
With r = 4, g € Ni(G, C)™*, denote:

(92,93) = H2,3(9) and (g1,94) = H1,4(g).

(g)Cuy is a gp’ cusp: Hags(g) and Hi4(g) are p’ groups. Ex: H(arbater)-
M (umford) cusps have go = g7 *.

p cusps: Those with plord(gag3).

o(nly)-p’: Cusps neither p nor g-p'.

Modular curve X (p**1) has H-M cusps, many p cusps of different cusps widths,
all growing in width by p as k increases, but no o-p’ cusps.

5.1. Apply R-H to MT components. Ni’ is a M, orbit on a reduced Nielsen
class Ni(G, C)2>*/ Q" (or Ni(G, C)™/Q"). Denote action of (79,71, Vec) (§4.1) on
Ni’ by (74, 71,75 ): Branch cycles for a cover H — P,

R-H gives genus, g: 2(deg(H /P})+¢'—1)=ind(v}) + ind(7}) + ind (75 )-

5.2. Answer these questions to compute genera of MT components.

e What are the components ﬁ; of Hj, (My orbits Ni}, on Nizd)?

e What are ram. orders over co (orbit lengths of 7/ on Nij)?

e What points ramify in each component over elliptic points 7 = 0 or 1;
length 3 (resp. 2) orbits of v, (resp. ;) on Ni,?
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6. WHERE IS THE MAIN CONJECTURE WITH 7 = 47

[LUM] has three Frattini Principles. We use here Frattini Princ. 1: If g € Gy, is
exactly divisible by p*, u > 0, it has above it in G41 only elements of order exactly
divisible by p**1. [LUM, ] shows Main Conj. 3.3 for G' a general p-perfect group
reduces to the case the p part of the center is trivial. This allows the following
conclusion: A level k+ 1 cusp over a p cusp at level k is ramified (of order p).

6.1. Reductions from [LUM]. Let B’ = {H}}2, be an infinite component
branch. Main Conj. contradictions:

(6.1a) g7, =0 for all 0 < k < oo (B’ has genus 0; gp consists of 0’s); or
(6.1b) For k large, 97 = 1 (B’ has genus 1; almost all of gps is 1’s).

Usage: From R-H, for & >> 0, (6.1b) implies ﬁﬁm — ﬁ; doesn’t ramify. So,

FP1 says: For no k does ﬁ; have a p cusp or a Main Conj. exception satisfies
(6.1a).

6.2. Possible exceptional cases! [LUM, §5]. Assume p) € ﬁ;ﬂ is a p cusp
(some k). Denote: deg(ﬂ;ﬂrl/ﬁ;) =, and |pg41 € ﬁﬁm overp) | =ug.

Theorem 6.1. Then, the Main Conj. is true unless for k >> 0, vy = p, uxp =1
and ﬁﬁcﬂ/ﬁ; is equivalent (as a cover over K ) to either:

o (P M) a degree p polynomial map; or

o (R*"M) a degree p rational function p order ramification over two points.

Corollary 6.2. If neither (P°"M) nor (R**M) hold for the component branch B’,
then high levels of B’ have no K points.

For B’ with full elliptic ramification (includes when B’ has fine reduced moduli)
for k >> 0, the Main Conj. holds unless (R** M) holds.
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