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Regular realizations of p-projective quotients and modular curve-like
towers

M. D. Fried

Abstract. This exposition on Modular Towers (MT s) shows how the Regular Inverse
Galois Problem (RIGP) generalizes modular curves by considering all Frattini extensions
of a given p-perfect finite group G. The result is towers of spaces generalizing modular
curve towers — minus their cusps : {Y1(p

k+1)}∞k=0 is a case with G = Dp (p odd).
The Main Conjecture on MT s is that there are no rational points at high levels

[LUM]. If true the difficulty in the RIGP is because the context generalizes the Mazur-
Merel results. More so, A. Cadoret has shown the Strong Torsion Conjecture (STC)
implies the Main Conjecture [STMT]. Though the STC is known only for dim. 1, there
has been serious progress on the Main Conjecture. Ingredients include a theory of cusp
types on a MT. We understand those projective systems of tower components that have
properties resembling modular curves through two tools:

• The Fried-Serre lifting invariant generalizing an invariant for the spin covers of
alternating groups [AGLI]; and

• a result of T. Weigel that explains towers levels through a group extension prob-
lem applied to a p-Poincaré duality group [We].

Here is a list of the sections.
1. Use of conjugacy classes
2. Is the RIGP really so hard?
3. The RIGP realm using virtually pro-p groups
4. Cusps on curve components (r = 4)
5. Compare modular curve cusps with MT cusps
6. Where is the Main Conjecture with r = 4?

The following were not in the talk, but are an addition to the pdf talk file [WS].
7. What happens in real MT levels!
8. Generalizing Serre’s OIT and the g-p′ conjecture
App. A: Fried-Serre Formula for Spin-Lift Invariant
App. B: sh-incidence Matrix for (A4,C±32)

The I(nverse)G(alois)P(roblem) for G: Is finite group G the Galois group of an
extension of every number field?

The R(egular)IGP for G: Is there one Galois extension LG/Q(z) with group
G containing only Q for constants? From Hilbert’s irreducibility Theorem, RIGP
(for G) =⇒ IGP (for G). Further, beyond the solvable case, the RIGP has
provided most all the successes through the braid monodromy method.

1. Use of conjugacy classes

We say ggg def= (g1, . . . , gr) ∈ Gr generates with product-one if

〈g1, . . . , gr〉 = G and
∏

g1 · · · gr
def= Π(ggg) = 1.

Also, ggg defines a set C of conjugacy classes in G. Given C, ggg ∈ C means ggg defines
C. Such ggg form the Nielsen class Ni(G,C) of (G,C).
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In C = {C1, . . . ,Cr} some classes may appear several times: multiplicity counts;
order does not.

1.1. R(iemann’s)E(xistence)T(hm). A regular realization LG/Q(z) has r ≥ 2
branch points = {z1, . . . , zr} (z over which are less than [LG : Q(z)]places): zi �→
conjugacy class Ci of inertia gen. from a clockwise small circle around zi.

RET: G(LG/Q(z)) = G =⇒ some ggg ∈ C generates G with product-one.
Since the realization is over Q, C is a rational union (its union is closed under

putting all elements in it to powers prime to orders of elements in C).

1.2. An addition to [FrV, Main Thm.]

Theorem 1.1 (Branch-Generation Thm.). Assume G is centerless and C∗ is a
distinct set of (nonidentity) classes in G. An infinite set IG,C∗ indexes distinct

absolutely irreducible Q varieties RG,C∗
def= RG,C∗,Q = {Hi}i∈IG,C∗ with:

• i ∈ IG,C∗ �→ iC, a rational union of ri conjugacy classes in G with support
in C∗.

• The RIGP holds for G with conjugacy classes C supported in C∗ ⇔ i ∈
IG,C∗ with C = iC and Hi has a Q point.

1.3. Using Nielsen classes. Realizations come from augmenting existence of
RG,C∗ with info on Hi, i ∈ IG,C∗ .

The reduced space Hrd
i : Equivalence field extensions under change of variables

z �→ α(z), α ∈ PGL2(C). Dimension of Hrd
i is ri − 3.

1.4. Dp and An cases. G = Dpk+1 , p odd, C∗ = {C2} (class of involution):
Then i �→ C2ri is one-one and onto ri ≥ 4 even. Also, Hrd

i identifies with the
space of cyclic pk+1 covers of hyperelliptic jacobians of genus ri−2

2 .
(Fried-Serre) G = An with C∗ = {C3}, class of 3-cycles:

Then i �→ C3ri with ri ≥ n is two-one. Denote indices mapping to r by i±r .
Covers in Hi±r are Galois closures of degree n covers φ : X → P1

z with 3-cycles for
local monodromy. Write divisor (dφ) of differential of φ as 2Dφ. Then, φ ∈ Hi+r
(resp. Hi−r ) if the linear system of Dφ has even (resp. odd) dim.; even (resp. odd)
θ characteristic. For ri = n− 1, i �→ C3ri is one-one.

2. Is the RIGP really so hard?

Dividing RIGP techniques into three cases shows how i ∈ IG,C∗ on iC affects
complexity of computation. Yet, it is diophantine reasons more than group theory
complexity that makes the RIGP hard.

1. When ri = 3, Hrd
i is a finite collection of (Q) points.

2. When ri = 4, Hrd
i is naturally an upper half-plane quotient and a cover of

the j-line, with meaningful cusp types.
3. No matter what is ri, Hi is a cover of Uri , projective ri space minus

its discriminant locus; can compare this with the (Galois) Noether cover
U ri → Uri (with group Sri).
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2.1. Using #1. Rigidity is an effective sufficiency test for finding i ∈ I with
ri = 3. It requires only the character table of G to conclude the RIGP for G.

Problem: Rarely does this hold. Even for Chevalley groups, the method achieved
only special rank 1 groups over prime finite fields (Belyi) and some other special
simple groups by Matzat and Thompson.

2.2. Using #3. For many families of simple groups Thompson and Völklein found
C∗ and used specific i ∈ IG,C∗ (Thompson-tuples). Their Hi → Uri covers were
almost subcovers of U ri → Uri . This gave many examples of simple G satisfying
RIGP.

Problem: This required much luck and great expertise on simple group series.

2.3. Virtues of using #2.
• Hrd

i is a curve with useful cusps from the moduli problem to compactify
it. Gives precise statements about these spaces.

• More groups (like all simple groups and all their Frattini covers) have
conjugacy classes producing this case than holds for #1.

• Combinatorial techniques allow computing the genus of these spaces, and
to identify the part of the Nielsen class they come from.

3. The RIGP realm using virtually pro-p groups

We use the virtually pro-p universal p-Frattini cover pG̃ of G, for any prime
p||G| to see how the RIGP generalizes classical results for modular curves. If G is
centerless and p-perfect (no surjective G→ Z/p), then pG̃ = lim∞←k Gk, with:

• Gk also p-perfect and centerless; and
• Gk → G versal for all extensions ψ : H → G with ker(ψ) a p-group of

exponent at most pk.

3.1. Add a restriction on Ramification. From Schur-Zassenhaus, if a conju-
gacy class is p′, then it has a unique lifts to a p′ class in Gk. So, if C consists of p′

classes, denote those lifted classes to Gk by the same notation. Here is a restrict
ramification condition depending on r0 ≥ 3:

Ramr0 : For k ≥ 0, use covers in Ni(Gk,Ck) with at most r0 classes in Ck.

Question 3.1 (RIGP(G,p,r0) Question). Is there an r0 so all Gk s satisfy the
RIGP from covers in Ramr0?

3.2. How the Main Conjecture Arises.

Theorem 3.2 (Fried-Kopeliovic, 1997). If the conclusion of Quest. 3.1 is affir-
mative (for (G, p, r0)), then there are p′ conjugacy classes C (no more than r0) in
G, and a projective system {H′k ∈ RGk,C}∞k=0 each having a Q point.

We call {H′k}∞k=0 a M(odular) T(ower) component branch (over Q).

Conjecture 3.3 (Main Conjecture). Given any MT component branch, and any
number field K, for k >> 0, H′rdk (K) = ∅.
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4. Cusps on curve components (r = 4)

Twist action of H4 = 〈q1, q2, q3〉 generators on ggg ∈ Ni(Gk,C)/G def= Ni(Gk,C)in.
Ex.: q2 : ggg �→ (g1, g2g3g−1

2 , g2, g4).
Level k Cusps: Cu4

def= 〈q1q−1
3 , (q1q2q3)2, q2〉 orbits on Ni(Gk,C)in. Denote

〈q1q−1
3 , (q1q2q3)2〉 by Q′′.

4.1. Why M̄4
def= H4/Q′′ is PSL2(Z).

• q2 �→ γ∞;
• q1q2q3 (shift) �→ γ1 (order 2).
• q1q2 �→ γ0 has order 3, from braid relation q1q2q1 = q2q1q2 mod Cu4 and

Hurwitz relation 1 = q1q2q3q3q2q1:

= q1q2q1q1q2q1 = q1q2q1q2q1q2 = (q1q2)3.

4.2. From a component branch, what to compute.

• Nature of cusps and their widths (length of Cu4 mod Q′′ orbits).
• How they fall in M̄4 orbits and of what genera (Riemann-Hurwitz).

5. Compare modular curve cusps with MT cusps

When r = 4, MT levels ( k ≥ 0) are j-line covers, but rarely modular curves.
The following description of cusps is from [LUM, §3.2].

With r = 4, ggg ∈ Ni(G,C)in, denote:

〈g2, g3〉 = H2,3(ggg) and 〈g1, g4〉 = H1,4(ggg).

(ggg)Cu4 is a g-p′ cusp: H2,3(ggg) and H1,4(ggg) are p′ groups. Ex: H(arbater)-
M(umford) cusps have g2 = g−1

1 .
p cusps: Those with p|ord(g2g3).
o(nly)-p′: Cusps neither p nor g-p′.
Modular curveX1(pk+1) has H-M cusps, many p cusps of different cusps widths,

all growing in width by p as k increases, but no o-p′ cusps.

5.1. Apply R-H to MT components. Ni′ is a M̄4 orbit on a reduced Nielsen
class Ni(G,C)abs/Q′′ (or Ni(G,C)in/Q′′). Denote action of (γ0, γ1, γ∞) (§4.1) on
Ni′ by (γ′0, γ′1, γ′∞): Branch cycles for a cover H′ → P1

j ,
R-H gives genus, gH′ : 2(deg(H′/P1

j)+g
′−1)=ind(γ′0) + ind(γ′1) + ind(γ′∞).

5.2. Answer these questions to compute genera of MT components.

• What are the components H′k of Hk (M̄4 orbits Ni′k on Nirdk )?
• What are ram. orders over ∞ (orbit lengths of γ′∞ on Ni′k)?
• What points ramify in each component over elliptic points j = 0 or 1;

length 3 (resp. 2) orbits of γ′0 (resp. γ′1) on Ni′k?
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6. Where is the Main Conjecture with r = 4?

[LUM] has three Frattini Principles. We use here Frattini Princ. 1: If g ∈ Gk is
exactly divisible by pu, u > 0, it has above it in Gk+1 only elements of order exactly
divisible by pu+1. [LUM, ] shows Main Conj. 3.3 for G a general p-perfect group
reduces to the case the p part of the center is trivial. This allows the following
conclusion: A level k + 1 cusp over a p cusp at level k is ramified (of order p).

6.1. Reductions from [LUM]. Let B′ = {H′k}∞k=0 be an infinite component
branch. Main Conj. contradictions:
(6.1a) gH′

k
= 0 for all 0 ≤ k <∞ (B′ has genus 0; gB′ consists of 0’s); or

(6.1b) For k large, gH′
k

= 1 (B′ has genus 1; almost all of gB′ is 1’s).

Usage: From R-H, for k >> 0, (6.1b) implies H′k+1 → H′k doesn’t ramify. So,
FP1 says: For no k does H′k have a p cusp or a Main Conj. exception satisfies
(6.1a).

6.2. Possible exceptional cases! [LUM, §5]. Assume ppp′k ∈ H′k is a p cusp
(some k). Denote: deg(H′k+1/H

′
k) = νk and |pppk+1 ∈ H′k+1 overppp′k| =uk.

Theorem 6.1. Then, the Main Conj. is true unless for k >> 0, νk = p, uk = 1
and H′k+1/H

′
k is equivalent (as a cover over K) to either:

• (Poly M) a degree p polynomial map; or
• (RediM) a degree p rational function p order ramification over two points.

Corollary 6.2. If neither (PolyM) nor (RediM) hold for the component branch B′,
then high levels of B′ have no K points.

For B′ with full elliptic ramification (includes when B′ has fine reduced moduli)
for k >> 0, the Main Conj. holds unless (Redi M) holds.
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