Part 0: Exceptionality and fiber products
Part I: Exceptional rational functions over number fields
Part II: The exceptional tower \(\mathcal{T}_{Z,F_q} \) of any variety \(Z \) over \(\mathbb{F}_q \)
Part III: Generalizing Exceptionality: \(\Pr \)-exceptional covers and Davenport pairs
Part IV: (Chow) motives from exceptional covers and Davenport pairs: Diophantine category of Poincare series over \((Z, \mathbb{F}_q)\)
Part V: Comparing \(\mathcal{T}_{\mathbb{P}^1,F_q} \) with various subtowers: Generated by Serre’s Open Image Theorem, \(\text{CM} \) part; By Serre’s Open Image Theorem, \(\text{GL} \) part; By Wildly ramified polynomials.
Part 0: Exceptionality and fiber products

http://math.uci.edu/~mfried → §1.a. Articles and Talks: → ● Finite fields, Exceptional covers and motivic Poincare series

An \mathbb{F}_q cover $\varphi : X \to Z$ of absolutely irreducible normal varieties is exceptional if φ one-one on \mathbb{F}_q^t points for infinitely many t.

For a \neq field: φ has infinitely many exceptional residue class field reductions. We use the Davenport-Lewis name exceptional because, equivalently, a version of their geometric property holds for φ.
Using fiber products

Assume $\varphi_i : X_i \rightarrow Z$, $i = 1, 2$, are two covers (of normal varieties) over K. The set theoretic fiber product has geometric points

$$\{(x_1, x_2) \mid x_i \in X_i(\bar{K}), i = 1, 2, \varphi_1(x_1) = \varphi_2(x_2)\} :$$

$x \in X(\bar{F}_q)$ is a point in X with coordinates in \bar{F}_q.

Won’t be normal at (x_1, x_2) if x_1 and x_2 both ramify over Z. The categorical fiber product here is normalization of the result: components are disjoint, normal varieties, $X_1 \times_Z X_2$.
Galois closure of a cover

Denote $X \times_Z X$ minus the diagonal by $X_Z^2 \setminus \Delta$.

$X_Z^k \setminus \Delta$: kth iterate of the fiber product minus the fat diagonal; empty if $k > n = \deg(\varphi)$.

Any K component \hat{X} of $X_Z^n \setminus \Delta$ is a K Galois closure of φ: unique up to K isomorphism of Galois covers of Z.

S_n action on $X_Z^n \setminus \Delta$ gives the Galois group $G(\hat{X}/Z) \overset{\text{def}}{=} \hat{G}_\varphi$: subgroup fixing \hat{X}. Without $\hat{\cdot}$, G_φ, denotes absolute Galois closure.
Part I: Exceptional rational functions over \(\# \) fields

Cyclic polynomials have the form \(x \rightarrow x^n \). RSA code scheme uses these. Fewer people know about Chebychev polynomials. Yet, these also have their cryptography use, as do compositions of these types.

Proposition 1. If \((n, p - 1) = 1 \), then we can use \(x^n \) to scramble data into \(\mathbb{Z}/p \). If \(n \) is odd, there are infinitely many such primes \(p \).

Proof. Euler’s Theorem: Powers of a single integer \(\alpha \) fill out \(\mathbb{Z}/p \setminus \{0\} \overset{\text{def}}{=} \mathbb{Z}/p^* \). \(\square \)
Residue Primes that work for (odd) n

Take $p \in \{k + m \cdot n | m \in \mathbb{Z}\}$ where k satisfies:

• $(k, n) = 1$ (apply Dirichlet’s Theorem); and

• $(k - 1, n) = 1 ((p - 1 = k - 1 + m \cdot n, n) = 1)$.

Example: $k = 2$ works; other integers may too.
Tchebychev polynomials of odd degree n

$$T_n\left(\frac{1}{2}(x + 1/x)\right) = \frac{1}{2}(x^n + 1/x^n),$$
$$T_n : \{\infty, \pm 1\} \mapsto \{\infty, \pm 1\}.$$

Proposition 2. If $(n, 6) = 1$, then $T_n : \mathbb{Z}/p \to \mathbb{Z}/p$ maps one-one for infinitely many p. Exactly those primes p with $(p^2 - 1, n) = 1$.

Proof: Use finite fields $\mathbb{F}_{p^2} \supset \mathbb{Z}/p$: $\mathbb{F}_{p^2}^*$ cyclic.
2. Schur’s Conjecture:

Cryptography we recognize in modern algebra goes back to the middle of the 1800s. They used finite fields as the place to encode a message.

Conjecture 3 (Schur 1921). Only compositions of cyclic, Tchebychev and degree 1 ($x \mapsto ax + b$) give polynomials mapping 1-1 on \mathbb{Z}/p for ∞-ly many p.

Problem 4. How to check if an $f(x)$ is a composition of the correct polynomials? If so, how to check if it is 1-1 for ∞ of p (notation: $1\text{-}1_{\infty}$)?
Points toward proving Schur’s conjecture:

Step 1: If \(f = f_1 \circ f_2 \) (\(f_i \in \mathbb{F}_q[x] \)), then \(f \) is 1–1\(_\infty\) if and only \(f_1 \) and \(f_2 \) are 1–1\(_\infty\).

Subtle reduction: If \(f \) decomposes over \(\mathbb{C} \) then it decomposes over \(\mathbb{Q} \) (not automatic for rational functions). So, to prove Schur’s conjecture we consider \(f \) indecomposable over \(\bar{K} \).

Step 2: Consider 1–1\(_\infty\) \(f \) with \(f : \mathbb{Z}/p \to \mathbb{Z}/p \) 1-1. Then, the polynomial expression

\[
(\ast) \quad \varphi(x, y) = \frac{f(x) - f(y)}{x - y} = 0
\]

has no solutions \((x_0, y_0) \in \mathbb{Z}/p \times \mathbb{Z}/p, \ x_0 \neq y_0 \).
Cover characterization of exceptionality

Proposition 5 (Weil). If $\varphi(x, y)$ has u absolutely irreducible factors (over \mathbb{F}_p), then (*) has at least $u \cdot p + A\sqrt{p}$ solutions (some A constant in p).

Corollary 6. If f is $1–1_\infty$, then $\varphi(x, y) \mod p$ has no absolutely irreducible factors (for p large).

Proposition 7. [DL63] → [Mc67] → [Fr74] → [Fr05] → [GLTZ07]: General \mathbb{F}_q cover of normal varieties: $\varphi : X \to Z$ exceptional over \mathbb{F}_{q^t}

$\iff X^2 \setminus \Delta$ has no \mathbb{F}_{q^t} abs. irred. components.
For $1-1_{\infty} f : \mathbb{P}^1_x \to \mathbb{P}^1_z$, the groups \hat{G}_f and G_f

Consider $f(x) - z = 0$ with z a variable. Find n solutions x_1, \ldots, x_n in some algebraic closure F of $\mathbb{Q}(z)$: $f(x_i) = z$; they generate a field $\mathbb{Q}(x_1, \ldots, x_n, z) \overset{\text{def}}{=} L_f$. Then, $\hat{G}_f = G(L_f/\mathbb{Q}(z))$.

Proposition 8. Then, $G_f \leq S_n$ is primitive, not doubly transitive, and contains an n-cycle.

Example 9. Assume $n > 2$ is prime. The group D_n (Dihedral of degree n) with generators

$$g_1 = (1 \ n)(2 \ n-1) \cdots \left(\frac{n-1}{2} \ \frac{n+3}{2}\right),$$

$$g_2 = (2 \ n)(3 \ n-1) \cdots \left(\frac{n+1}{2} \ \frac{n+3}{2}\right)$$

is primitive, not double transitive, has an n-cycle.
Why primitive with an n-cycle?

With $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n$ (exceptionality allows monic). Solve for x from $f(x) = z$. Solution:

$$x_1 = z^{1/n} + b_0 + b_1 z^{-1/n} + b_2 z^{-2/n} + \cdots .$$

Substitute $e^{\frac{2\pi i \cdot k}{n}} z^n \mapsto z^{1/n}$ for n-cycle in G_f.

Let $G_f(x_1)$ be the subgroup of G_f fixing x_1.

Primitive means no proper group H with $G_f(x_1) < H < G_f$. Galois correspondence: Such an H would mean a field $L = \mathbb{Q}(w)$ with $\mathbb{Q}(z) < L < \mathbb{Q}(x_1)$. So, $w = f_2(x_1)$, and $z = f_1(w)$. Contrary to indecomposable f: $f_1(f_2(x_1)) = z$.

Typeset by FoilTEX
Concluding Schur’s Conjecture

Why G_f is not doubly transitive: Equivalent to
\[\varphi(x, y) \left(X_Z^2 \setminus \Delta \right) \] has at least two factors over $\overline{\mathbb{Q}}$ (from no abs. irred. factors over \mathbb{Q}).

Get Schur’s conjecture if 1^{-1}_{∞} and indecomposable f is variable change of cyclic or Chebychev polynomial. Chebychev case: variable change, $(z, x) \rightarrow (az + b, a'x + b')$ $(a, b, a', b' \in K)$, allows $f(\pm u) = \pm u$ with $u^2 = a \in K$.

Then, with $\ell_u : x \mapsto ux$, $f = \ell_u \circ T_n \circ \ell_{u^{-1}}$ def $= T_{n,a}$: $u^{n-1}T_{n,a}$ is what a large literature calls a Dickson polynomial [LMT93].
All exceptional prime degree rational f

Step 1: Show G_f is a cyclic or dihedral group.

Proposition 10 (Famous Group Results). If n is a prime, then (Burnside):

$$G_f \leq \left\{ \begin{pmatrix} u & v \\ 0 & 1 \end{pmatrix} \mid u \in (\mathbb{Z}/n)^*, v \in \mathbb{Z}/n \right\} \overset{\text{def}}{=} \mathbb{Z}/n \times s(\mathbb{Z}/n)^*.$$

For n not prime there is no such G_f: Schur.

Step 2: Show G_f dihedral (resp. cyclic) \iff polynomial f is Chebychev (resp. cyclic) after changing variables.

Best part: *Monodromy method* solves many other problems (Schur’s conjecture the easiest).
Step 2 cont: Apply Riemann’s Existence Theorem.

For $g \in S_n$, $\text{ind}(g) \overset{\text{def}}{=} n - \# \text{ of disjoint cycles in } g$ (including length 1).

If $f : \mathbb{C}_x \cup \{\infty\} \to \mathbb{C}_z \cup \{\infty\}$, with branch points $z_1, \ldots, z_r \Rightarrow r$ elements $g_1, \ldots, g_r \in G_f$ (branch cycles) with these properties:

• $G_f = \langle g_1, \ldots, g_{r-1} \rangle$ (generation);
• $\prod_{i=1}^{r} g_i = 1$ (product-one); and
• $2(n - 1) = \sum_{i=1}^{r} \text{ind}(g_i)$ (genus 0).
Finish Polynomial case

• $g_r \overset{\text{def}}{=} g_\infty$ is an n-cycle; and

• $n - 1 = \sum_{i=1}^{r-1} \text{ind}(g_i)$ (genus 0).

Proposition 11. Combine with

$$g_1, \ldots, g_{r-1}, g_\infty \in \mathbb{Z}/n \times^{s}(\mathbb{Z}/n)^*.$$

Polynomial Result:

• $\{g_1, \ldots, g_{r-1}\} = \{g_1, g_2\}$ as in Ex. 9 modulo conjugation in S_n, $g_\infty = (1 \, 2 \, \ldots \, n)^{-1}$; or

• $r = 2$ and $g_1 = (1 \, 2 \, \ldots \, n)$.

Tchebychev/cyclic polynomial branch cycles.
Dominant rational (not polynomial) function case

Branch cycles are \((g_1, g_2, g_3, g_4)\), \(g_i\)s conjugate to \((-1 \ 0 \ 0 \ 1) \in \mathbb{Z}/n \times s \{\pm 1\}\). Most new functions from Weierstrass \(\wp\)-functions through this diagram:

\[
\begin{align*}
\mathbb{C}\{\pm w\} \cup \{\infty\} & \xrightarrow{f} \mathbb{C}\{\pm z\} \cup \{\infty\} \\
\mod\{\pm 1\} & \xrightarrow{\text{mod } L_z/L_w \equiv \mathbb{Z}/n} \mathbb{C}_z/L_z.
\end{align*}
\]

Here \(L_w \leq L_z\) both generated over \(\mathbb{Z}\) by two linearly independent (over \(\mathbb{R}\)) complex numbers.
Part II: Exceptional tower $\mathcal{T}_{Z,\mathbb{F}_q}$ of variety Z over \mathbb{F}_q

Extension of constants series

Let $\hat{K}_\varphi(k)$ be the minimal def. field of (geom.) \bar{K} components of $X_{Z}^k \setminus \Delta$, $1 \leq k \leq n$:

$$\ker(\hat{G}_\varphi \to G(\hat{K}_\varphi(n)/K)) = G_\varphi.$$

Each $\hat{K}_\varphi(k)/K$ is Galois: kth ext. of constants field: $G(\hat{K}_\varphi(k)/K)$ permutes geom. components of $X_{Y}^k \setminus \Delta$. Denote perm. rep. by $T_{\varphi,k}$.
Characterize exceptional

There is a natural sequence of quotients

\[G(\hat{X}/Y) \to G(\hat{K}_\varphi(n)/K) \to \cdots \to G(\hat{K}_\varphi(k)/K) \to \cdots \to G(\hat{K}_\varphi(1)/K). \]

\[G(\hat{K}(1)/K) \] is trivial iff all \(K \) components of \(X \) are absolutely irreducible.

Theorem 12. For \(K \) a finite field, \(G(\hat{K}_\varphi(2)/K) \) having no fixed points under \(T_{\varphi,2} \) characterizes \(\varphi \) being exceptional ([Fr74], [Fr05], [GLTZ07]).
The tower $\mathcal{T}_{Z, \mathbb{F}_q}$ and its cryptology potential

Morphisms $(X, \varphi) \in \mathcal{T}_{Z, \mathbb{F}_q}$ to $(X', \varphi') \in \mathcal{T}_{Z, \mathbb{F}_q}$ are covers $\psi : X \to X'$ with $\varphi = \varphi' \circ \psi$. Partially order $\mathcal{T}_{Z, \mathbb{F}_q}$ by $(X, \varphi) > (X', \varphi')$ if there is an (\mathbb{F}_q) morphism ψ from (X, φ) to (X', φ').

Then ψ induces:

- a homomorphism $G(\hat{X}_\varphi/X_\varphi)$ to $G(\hat{X}_{\varphi'}/X_{\varphi'})$; and
- canonical map from cosets of $G(\hat{X}_\varphi/X_\varphi)$ in $G(\hat{X}_\varphi/Z)$ to the corresponding cosets for X'.

Note: (X, ψ) is automatically in $\mathcal{T}_{X', \mathbb{F}_q}$.
Forming the exceptional tower

Nub of an exceptional tower of \((Z, \mathbb{F}_q)\): \(\exists\) unique minimal exceptional cover \(X\) — the fiber product — dominating exceptional covers \(\varphi_i : X_i \rightarrow Z, \ i = 1, 2\). Note: Everything depends on \(\mathbb{F}_q\).

For \((X, \varphi) \in \mathcal{T}_{Z, \mathbb{F}_q}\) denote cosets of \(G(\hat{X}_\varphi/X_\varphi)\) in \(G(\hat{X}_\varphi/Z) = \hat{G}_\varphi\) by \(V_\varphi\); coset of 1 by \(v_\varphi\) and the rep. of \(\hat{G}_\varphi\) on these cosets by \(T_\varphi : \hat{G}_\varphi \rightarrow S_{V_\varphi}\). Write \(G(\hat{K}_{\varphi_i}(2)/\mathbb{F}_q)\) as \(\mathbb{Z}/d(\varphi_i), \ i = 1, 2\).
Why $X_1 \times_Z X_2$ has exactly one abs. irred. comp.

Do $\frac{1}{2}$, suppose none! Let $\mathbb{F}_{q^t_0}$ contain coefficients of all absolutely irred. $X_1 \times_Z X_2$ comps. Then, if $(t, t_0) = 1$, $X_1 \times_Z X_2$ has no abs. irr. com. over \mathbb{F}_{q^t}.

Normality $\implies X_1 \times_Z X_2(\mathbb{F}_{q^t}) = \emptyset$.

D-L criterion allows assuming φ_i's are étale. Then, $t \in (\mathbb{Z}/d(\varphi_i))^*$, $i = 1, 2$, $\implies \varphi_i$ is 1-1 and onto (over \mathbb{F}_{q^t}), $i = 1, 2$. For t large, $\exists z \in Z(\mathbb{F}_{q^t})$ $\implies \exists x_i \in X_i(\mathbb{F}_{q^t}) \mapsto z$, $i = 1, 2$.

So $(x_1, x_2) \in X_1 \times_Z X_2(\mathbb{F}_{q^t})$.
** Proposition 13.** In $\mathcal{T}_{Z,\mathbb{F}_q}$ there is at most one (\mathbb{F}_q) morphism between any two objects. So, $\varphi : X \rightarrow Z$ has no \mathbb{F}_q automorphisms: $\text{Cen}_{\mathcal{S}_V \varphi} (\hat{G}_\varphi) = \{1\}$.

Then, $\{(\hat{G}_\varphi, T_\varphi, v_\varphi) \}_{(X,\varphi) \in \mathcal{T}_{Z,\mathbb{F}_q}}$ canonically defines a compatible system of permutation representations; it has a projective limit (\hat{G}_Z, T_Z).

Value of the Tower: It now makes sense to form the subtower generated by special exceptional covers: The minimal tower including all covers in the set. Examples: Tamely ramified subtower; Schur-Dickson subtower of $\mathcal{T}_{\mathbb{P}^1_z,\mathbb{F}_q}$; Subtowers generated by CM (or GL_2) covers from Serre’s OIT (Part V).
Exceptional scrambling

For any t let $\mathcal{T}_{Z,\mathbb{F}_q}(t)$ be those covers with t in their exceptionality set.

Cryptology starts by encoding a message into a set. For t large our message encodes in \mathbb{F}_{q^t}. Then, select $(X, \varphi) \in \mathcal{T}_{Z,\mathbb{F}_q}(t)$. Embed our message as $x_0 \in X(\mathbb{F}_{q^t})$. Use φ as a one-one function to pass x_0 to $\varphi(x_0) = z_0 \in Z(\mathbb{F}_{q^t})$ for “publication.” You and everyone else who can understand “message” x_0 can see z_0 below it. To find out what is x_0 from z_0, need an inverting function $\varphi_t^{-1}: Z(\mathbb{F}_{q^t}) \rightarrow X(\mathbb{F}_{q^t})$.
Inverting the scrambling map

Question 14 (Periods). With $X = \mathbb{P}^1_x$ and $Z = \mathbb{P}^1_z$, identify them to regard φ on \mathbb{F}_{q^t} as φ_t, permuting $\mathbb{F}_{q^t} \cup \{\infty\}$. Label the order of φ_t as $m_{\varphi,t} = m_t$. Then, $\varphi_t^{m_t^{-1}}$ inverts φ_t. How does $m_{\varphi,t}$ vary, for genus 0 exceptional φ, as t varies?

Standard RSA inverts $x \mapsto x^n$ by inverting the nth power map on $\mathbb{F}_{q^t}^*$ (mult. by n on $\mathbb{Z}/(q^t - 1)$ — Euler’s Theorem). Works for all covers in the Schur Sub-Tower of $(\mathbb{P}^1_y, \mathbb{F}_q)$ generated by x^ns and T_ns. (For T_ns, “invert mult. by n” on $\mathbb{Z}/(q^{2^t} - 1)$.)
Part III: pr-exceptional covers and Davenport pairs

Definition 15. \(\varphi : X \to Z \) is \(p(\text{ossibly})r(\text{educible})-\text{exceptional} \): \(\varphi : X(\mathbb{F}_{q^t}) \to Z(\mathbb{F}_{q^t}) \) surjective for \(\infty \)-ly many \(t \).

Then, \(\varphi \) is exceptional iff \(X \) is abs. irreducible. We even allow \(X \) to have no abs. irred. comps.

Form \(\hat{X} \to Z \) (with its canonical rep. \(T_\varphi \)), the Galois closure with group \(\hat{G}_\varphi \), and get an extension of constants field with \(G(\hat{\mathbb{F}}_\varphi/\mathbb{F}_q) = \mathbb{Z}/\hat{d}(\varphi) \).
D-L generalization; pr-exceptional characterization

For \(t \in \mathbb{Z}/d(\varphi) \):

\[
\hat{G}_{\varphi,t} \overset{\text{def}}{=} \{ g \in \hat{G}_\varphi \mid \text{restricts to } t \in \mathbb{Z}/\hat{d}(\varphi) \}.
\]

Exceptionality set \(E_\varphi \) of a pr-exceptional cover:

\[
\{ t \in \mathbb{Z}/\hat{d}(\varphi) \mid \forall g \in \hat{G}_{\varphi,t} \text{ fixes } \geq 1 \text{ letter of } T_\varphi \}.
\]

pr-exceptional correspondences: \(W \subset X_1 \times X_2 \) with projections \(W \to X_i \)'s pr-exceptional.

Exceptional correspondence between \(X_1 \) and \(X_2 \)

\[
\implies |X_1(\mathbb{F}_q t)| = |X_2(\mathbb{F}_q t)| \text{ for } \infty-\text{ly many } t.
\]

If \(X_2 = \mathbb{P}_z^1 \), then \(\sum_{t=1}^\infty (a_n \overset{\text{def}}{=} |X_1(\mathbb{F}_q t)|) u^t \) has \(a_n = q^t + 1 \) for \(\infty-\text{ly many } t \).
A zoo of high genus except. correspondences between $\mathbb{P}^1_{x_1}$ and $\mathbb{P}^1_{x_2}$

If $\varphi_i: \mathbb{P}^1_{x_i} \to \mathbb{P}^1_z$, $i = 1, 2$ is exceptional, then $\mathbb{P}^1_{x_1} \times \mathbb{P}^1_z \mathbb{P}^1_{x_2}$ has a unique absolutely irreducible component, an exceptional cover of $\mathbb{P}^1_{x_i}$, $i = 1, 2$.

Suppose $\varphi_i: X_i \to Z$, $i = 1, 2$, are abs. irreducible covers. The minimal (\mathbb{F}_q) Galois closure \hat{X} of both is any \mathbb{F}_q component of $\hat{X}_1 \times_Z \hat{X}_2$. Attached group, $\hat{G} = \hat{G}(\varphi_1, \varphi_2) = G(\hat{X}/Z)$: Fiber product of $G(\hat{X}_1/Z)$ and $G(\hat{X}_2/Z)$ over maximal H through which they both factor.
D(avenport)Pairs: new pr-except. correspondences

Definition 16. \((\varphi_1, \varphi_2)\) is a DP (resp. i(sovalent)DP) if
\[\varphi_1(X_1(\mathbb{F}_{q^t})) = \varphi_2(X_2(\mathbb{F}_{q^t})) \]
for \(\infty\)-ly many \(t\) (resp. ranges assumed with same multiplicity; T. Bluer’s name).

Equivalent to being a DP:
\[X_1 \times_{\mathcal{Z}} X_2 \xrightarrow{\text{pr}_{X_i}} X_i, \]
is pr-exceptional, and the exceptionality sets \(E_{\text{pr}_i}(\mathbb{F}_q), i = 1, 2\), have nonempty (so infinite) intersection

\[E_{\text{pr}_1}(\mathbb{F}_q) \cap E_{\text{pr}_2}(\mathbb{F}_q) \overset{\text{def}}{=} E_{\varphi_1, \varphi_2}(\mathbb{F}_q). \]
Part IV: (Chow) motives: Diophantine category of
Poincare series over \((\mathbb{Z}, \mathbb{F}_q)\)

Let \(W_{D,\mathbb{F}_q}(u) = \sum_{t=1}^{\infty} N_{D}(t)u^t\) be a Poincaré series for a diophantine problem \(D\) over a finite field \(\mathbb{F}_q\). We call these Weil vectors. Example: \(F(x, z) \in \mathbb{F}_q[x, z]\),
\[
N_{D}(t) = |\{z \in \mathbb{F}_q^m | \exists x \in \mathbb{F}_q^m, F(x, z) = 0\}|.
\]

Weil Relation between \(W_{D_1,\mathbb{F}_q}(u)\) and \(W_{D_2,\mathbb{F}_q}(u)\): \(\infty\)-ly many coefficients of \(W_{D_1,\mathbb{F}_q}(u) - W_{D_2,\mathbb{F}_q}(u)\) equal 0. Effectiveness result: For any Weil vector, the support set of \(t \in \mathbb{Z}\) of 0 coefficients differs by a finite set from a union of full Frobenius progressions.
Motivic formulation

Question 17. If Poincare series of X over \mathbb{F}_q has t-th coefficient equal $q^t + 1$ for ∞-ly many t, is there a chain of except. correspondences from X to \mathbb{P}^1?

Equivalent to characterizing X for which $\sum_{t=1}^{\infty} \text{tr}_{\mathbb{F}_q} [\sum_{i=0}^{2} (-1)^i H^i_\ell(X)]u^t$ has a relation with the series with $X = \mathbb{P}^1$: *Chow motive* coefficients.

There are p-adic versions: Replace \mathbb{F}_q^t by higher residue fields with the Witt vectors R_t with residue class \mathbb{F}_q^t; and use integration instead of counting.
Result of Denef-Loeser [Fr77], [DL01], [Ni04]

Consider a number field version, by R_p the completion the integers of K with respect to prime p. Then, $W_{D,R_p}(u) \overset{\text{def}}{=} \sum_{v=1}^{\infty} N_{D,R_p}(v)u^v$ with $N_{D,R_p}(v)$ using values in R_p/p^v that lift to values in R_p. To make this useful motivically requires doing this for those D with a map to a fixed space Z/K.

Given D, There is a string of — relative to Z — Chow motives (over K) $\{[M_v]\}_{v=0}^{\infty}$, so for almost all p, $W_{D,R_p}(u) = \sum_{t=1}^{\infty} \text{tr}_{Fr_p}[M_t]u^t$.

— Typeset by Foil\TeX —
Role of iDPs

Given Weil Vector $W(D, \mathbb{F}_q)$ over (Z, \mathbb{F}_q) and $\varphi : X \to Z$ can define pullback $W^{\varphi}(D, \mathbb{F}_q)$ over (X, \mathbb{F}_q).

Assume $\varphi_i : X_i \to Z$, $i = 1, 2$, is an iDP over \mathbb{F}_q, $X_1 = X_2$ and D has a map to Z. Then, (φ_1, φ_2) produces new Weil vectors $W^{\varphi_i}_{D, \mathbb{F}_q}$, $i = 1, 2$, and a relation between $W^{\varphi_1}_{D, \mathbb{F}_q}(u)$ and $W^{\varphi_2}_{D, \mathbb{F}_q}(u)$: infinitely many coefficients of $W^{\varphi_1}_{D, \mathbb{F}_q}(u) - W^{\varphi_2}_{D, \mathbb{F}_q}(u)$ equal 0.
Part V: CM and GL_2 exceptional genus 0 covers

Test for a cover $\varphi : X \to Z$ decomposing. Check $X \times_Z X \setminus \Delta$ for irreducible components Z of form $X' \times_Z X'$. If none, then φ is indecomposable. Otherwise, φ factors through $X' \to Z$ (Gutierrez, et.al. from [FrM69]).

Denote the minimal Galois extension of K over which φ decomposes into absolutely indecomposable covers by $K_{\varphi}(\text{ind})$: The indecomposability field of φ.

Proposition 18. For any cover $\varphi : X \to Z$ over a field K, $K_{\varphi}(\text{ind}) \subset \hat{K}_{\varphi}(2)$.
Most of rest of genus 0 except covers \(\mathbb{Q} \)

[Fr78], [GSM04]: From Weierstrass \(\wp \)-functions.

\[
\begin{align*}
\mathbb{P}^1_{\pm w} \quad & \xrightarrow{f} \quad \mathbb{P}^1_{\{\pm z\}} \\
\text{mod } \{\pm 1\} \uparrow & \quad \uparrow \text{mod } \{\pm 1\}
\end{align*}
\]

\[
\begin{align*}
\mathbb{C}_w/L_w \quad & \xrightarrow{\text{mod } L_z/L_w} \quad \mathbb{C}_z/L_z.
\end{align*}
\]

- Case CM: \(\deg(f) = r \), a prime
- Case GL\(_2 \): \(\deg(f) = r^2 \), a prime squared

[O67], [Se68], [Se81], [R90], [Se03] \(\Leftrightarrow \) case of Serre's O(pen)l(mage)T(heorem). CM case can describe inversion period from "Euler's Theorem," essentially equivalent to the theory of complex multiplication.
GL$_2$ gist [Fr05, §6.1-.2], Serre’s GL$_2$ OIT [Se68, etc]

- $[f] \mapsto \mathbb{P}^1_j$ by the j-invariant of the 4 branch points;

- $G_f = (\mathbb{Z}/r)^2 \times s \{\pm 1\}$; yet

- for a non-CM j-invariant (say in \mathbb{Q}), then for a.a. r, then for $f \overset{\text{def}}{=} f_{j,r}$, $\hat{G}_f = (\mathbb{Z}/r)^2 \times s \text{GL}_2(\mathbb{Z}/r)$.

Exceptionality versus indecomposability: Given $f_{j,r}$ and the set A of $A \in \text{GL}_2(\mathbb{Z}/r)/\{\pm 1\}$ for which A acts irreducibly on $(\mathbb{Z}/r)^2$. Consider $P_{f_{j,r},A}$ those primes p with the Frobenius of $f_{j,r} : \mathbb{P}^1_w \to \mathbb{P}^1_z \mod p$ in A. For such p

- $f_{j,r} \mod p$ is exceptional; and (equivalently)

- $f_{j,r} \mod p$ is indecomposable, but decomposes over $\overline{\mathbb{F}}_p$.
Two automorphic function questions

[Fr05, §6] poses an analog of [Se03] to find an automorphic funct. (should exist according to Langlands) for primes of except. for \(j \leftrightarrow \) Ogg’s curve \(3^+ \) [Se81, extensive discuss]. Would give an explicit structure to the primes of exceptionality.

For any exceptional \(f_{j,r} \mod p \), form a Poincaré series with the period of exceptionality its coefficients. Conjecture, this series is rational. This result would then remove from consideration the arbitrary identification of \(\mathbb{P}^1_w \) with \(\mathbb{P}^1_z \).
Bibliography; Parts 0 and I:

Bibliography; Parts II and V: