Modular Towers:
(Pro-)finite Groups and Cusp Geometry

We start with a prime p dividing the order of a finite
group G = Gg. This produces a projective system of
groups strikingly like the dihedral sequence {D,+}32
(p. 7, 8). By recasting the regular Inverse Galois prob-
lem we produce Modular Towers (MTs). Its fundamen-
tal problems/results generalize those of modular curves
(the case Go = D,). MTs of higher rank (p. 7, 9), like
modular curves, allow topics where p varies.

We use a rank two MT to show how two of Serre's
largest projects combine: Spin covers of alternating
groups; and his open image theorem for Gg acting on
projective systems of points on modular curves [Se90a],
[Se68]. This works best applied to MTs for p-perfect
groups in concert with g-p’ cusps (p. 12), generalizing
the previous notion of Harbater-Mumford cusps. EXx-
amples of reduced 4-branch point MTs (moduli dessins
d'enfants) show how Schur multipliers applied to g-p’
cusps control projective systems of components and
cusp ramification from level to level. Only for dihedral-
like groups do Schur multiplier effects disappear. We
apply these to two well-known problems to strengthen
the modular curve comparison (p. 24,25).



Main source of talk topics

[FV92 ] M. Fried and H. Volklein, The embedding problem
over an Hilbertian-PAC field, Annals of Math 135
(1992), 469—481.

Our main example alludes to the technique relat-
ing inner and absolute Hurwitz spaces through outer
automophisms of finite groups. This has as a corol-
lary the only known presentation for Gg:

(0@
1—>Fw—>G@—>HSn—>1.

n=>2

[BFr02 ] with P. Bailey, Hurwitz monodromy, spin sepa-
ration and higher levels of a Modular Tower, in
Proceedings of Symposia in Pure Mathematics 70
(2002) editors M. Fried and Y. Ihara, 1999 von
Neumann Symposium on Arithmetic Fundamental
Groups and Noncommutative Algebra, August 16-
27, 1999 MSRI, 79—221.

[RIMS02 | Moduli of relatively nilpotent extensions, Insti-
tute of Mathematical Science Analysis 1267, June
2002, Communications in Arithmetic Fundamental
Groups, 70—94.

[FrS03 | with D. Semmen, Schur multiplier types and Shimura-
like systems of varieties, 20 pg. preprint, May 2003.
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Key inspirational papers appearing in talk
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lar Towers (MTs): slides for a Luminy talk, March,
2004. Outlines a proof of the weak Main Conjec-
ture, and conjectures how g-p’ cusps describe limit
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Modular Towers: Durham, Sept. 5 2003

Riemann sphere: Pl = C, U {oo}, for

z2=21,...,2r C Pl PI\ {2} = U,.

Modular Tower (MT): Sequence of moduli spaces;
generalize sequences of modular curves. Levels
are moduli spaces of covers from finite group
G, prime p dividing |G| and p’ conjugacy classes

C (in G, r of them; we take r = 4).

Construction depends on the universal p-Frattini
cover of G (Pierre Debes' talk). This collects
otherwise unknowable finite groups into a us-
able structure. Two tools allow comparison
with general dessins d’'enfant:

e [ he sh-incidence pairing on cusps;

e |ifting invariants from Schur multipliers of
the universal p-Frattini cover quotients.

Nielsen class combinatorics allow MT level com-
putations using the geometry of their cusps.
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Nielsen classes:

Group G with r conjugacy classes C = (C+,...,C;):
T
Ni(G,C) ={9€C|(9) =G, || i=1}
i=1
— Ni(G,C)/Ng (G, C) (absolute classes) or —
Ni(G,C)/G (inner classes).

T hree example Nielsen classes:

o Ni(Gy(Dp), Cp4)2°519 (or Ni(Gy(Dp), Cpa)'™":
4 involutions in D, (p odd). Case p of a
rank 1 Modular Tower (modular curves).

e Simple group MT from Ni(Gy(As),Csz4):
Four 3-cycles in Ag. Rank O MT for p = 2.

e Tower akin to other two: Ni(Gy(A4),C_32):
Rational union of four 3-cycles in A4. Rank
2 MT for p=2.



Forming G (G) for p||G]

Finite group H acts on rank t lattice L or
finitely generated free group F' (L or F may
be trivial): C generating conjugacy classes for
H. Avoid p dividing order of elements in C.
For serious results: Finite quotient groups are
p-perfect (no Z/p quotient).

Pro-p group P has a Frattini subgroup ®(P)
generated by its pth powers and commutators.
Consider the pro-p completion ,F of F (or L).

Case 1: p f|H|, == H action on P/®(P)
extends to P. ,F x®H is Universal p-Frattini
cover of ,F/®P(pF) xH = G = Gq: p-slit case.

Case 2: For any finite group G and each prime
p, p||G|, there is a universal p-Frattini cover
Yp G — G.

Example 1. Rank 1, Dso: Z x5{+1} = Z x°H>.
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Frattini Properties

. Profreeness: ker(yy,) = kerg and a p-Sylow
of ,G are pro-free pro-p and ,G is the mini-
mal such profinite cover of G [FrJ; Chap. 21].

. Characteristic sequences: {Gp}72 g, {Mr}i20o:
kerpy1 = ®(kery), Gy = pG/kery,
My, = ker(Gg41 — Gi) a G module.

. Subgroup properties:
e p/ classes of G — p’ classes of ,G.

o Frattini:G* <Gy, 0(G*) =Go==G"=G},.
e Order p* (u > 1) conj. classes of G, lift
to order pUt1! classes of Gy 1.

. Mpy(G): p-Sylow P of GG: Indecomposable
summand ofInd%G(P)(MO(NG(P))) that maps
to Mo(Ng(P)) [MT1-95, RIMS02]

. Remaining Centerless: G p-perect and cen-
terless = so is Gi, k > 0 [FrK97]



Four 3-cycles
Example 2 (Rank two action). H = H3z =

Z,/3 acts on a free group F» with generators

def
V1,02. < > — Z/S by (’U]_,’UQ) = (vQ ,’l)]_’l)21).

Use the conjugacy classes C, 3>: Four conju-
gacy classes of elements of order 3, two map to
@ € 7Z/3 and two map to —u. Avoid only p = 3:
G above is GL((Z/p)?) xSH3. Use a copy of
Hz in Gi.((Z/p)?) x$Hz for each k (p # 3) to
define absolute classes.

T he collection of conjugacy classes in both ex-
amples is a rational union. All spaces formed
from a Nielsen class Ni(G,C) where C is a ra-
tional union have equations over Q [FrVv92].

Proposition 3. Ni(G,((Z/p)?) x*H3,C,32) is
nonempty. Covers in the inner classes form
a space analogous to X1(p*T1): in absolute
classes analogous to Xg(p*T1) (cosets of Hs).
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Harbater-Mumford (H-M) reps. in Prop. 3

H-M reps. k£ > 0:

1 1 :
(k91> k91 k92, k9> ) € Ni(Gg, C 32).

Since Gy, is a Frattini cover of Gg, rg1, g2 any
order 3 lifts to G, of generating order 3 g1,9> €
Ggo. No invariant subspaces for H on (Z/p)2.
Take g1 = (0, ) and go = (v* — v, u) for any v
not commuting with pu.

Braid action on Nielsen classes

Combinatorics for r = 4 that allows computing
properties of MT levels comes from the action
of {q1,92,q3) on Ni(G, C) inducing an action on
reduced Nielsen classes. Here is the action of
. —1
a2 : (91,---,94) — (91, 929395 ,92,94)-
Form: ~v0 = q192, 71 = 419293 = sh, Yo = q2.
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Upper half plane quotient covers

Three important groups: Q"= (Shz,q1q3 ): the

cusp group Cug = (g2, 9"); and My = {(vg,71)
generated freely by elements of order 3 and 2.

Y0, V1, Yoo ON Ni(G, €)' = Ni(G, C)/Q" (reduced
Niel. classes) gives H(G,C)™d — IP>]1 branch cy-
cles. vs from Debes-Fried cuts [DFr90] [BFr02,
§6] to match complex conjugation operator for
two pairs of complex conjugate branch points.

p € H(G,C)rd IS an equivalence class of cov-
ers in Ni(G, C): ramification indices over 0 di-
vide 3, over 1 divide 2. Orbits of ~~ coOrre-
spond to cusps; orbits of M, to components
of H(G, C)".

Go = As and F' trivial

Usep=2and C = C34, four conjugacy classes
of elements of order 3. Absolute equivalence:
Cosets of Ay4, genus 0 family with 4 ramified
points £ on each member.

p € H(G,C)2P s (j(zp),i(zp)) € P} x P})
embeds. Yet, not a modular curve (below)
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The Main Conjectures

e Weak conjecture: If G is p-perfect, no ra-
tional points at high levels of Ni(G, C)'nrd
Modular Tower < No genus O or 1 com-
ponents at high levels [BFr; Thm. 6.1].

e Strong conjecture: Running over p-perfect
primes attached to a Modular Tower of ar-
bitrary rank, only finitely many levels have
genus O or 1 components.

e [ he structure of Frattini central extensions
of finite group appears in properties of lev-
els of MTs: Components and cusp growth.

Remainder of talk: How g-p/-cusps generalize
H-M reps. to give structure for assigning cusps
({(~00) Orbits) to components (M, orbits) in lev-
els of the (Gp, C) MT. Especially: For our main
examples, how to account for all components
at levels O and 1 from either Schur multipliers
or the main technique behind [Frv92].
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Types of cusps

A cusp corresponds to (g)Cus/Q" C Ni(G, C)":

wd(g) det |(g)Cugs/Q"|, cusp width. Cusp Types:

def
p’ cusps: p f(g)mp = ord(gog3); and

g-p’ cusps: Ho 3(g) = (g2, 93) and H1 4(g) = (g1, 94)
are p’ groups. Usually:H3 3(g)NH1 4(g) = (9293).

e Both p’ and g-p’ cusps are Cuy invariants.

e In a MT, each g-p’ cusp has a projective
sequence of g-p’ cuspsoverit (Schur-Zass.).

Example 4. For H-M rep. g = (gl,gl_l,gg,ggl),
(g)sh has width 1 or 2 (p = 2 and k > 1,
wd((g)sh) = 2 for inner reduced classes) and
H>3(g) N Hy 4(g) = (1). Projective sequences
of H-M reps. {pg € Ni(Gy, €)'}, should
have their width grow as cpk (k large; while
shifts (rg)sh have width < 2). Checking width
growth requires analysis with Schur multipliers.
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Schur Multipliers

Go p-perfect == ,G — Gg quotients have
universal central p-extensions. Assume R* in
Gk+1—>R*—>Gk (head OkaZKer(¢k+17k)) and

(h') = ker(R* — Gj) = 1¢, < Schur quotient.

Generally, Schur quotients can occur anywhere
between G4 1 and G, as R* — G* — Gy, though
those at the head play a special role [FrS03,
84]. Always: Ni(R*, C) — Ni(G*, C) is injective.

Quotient with Antecedents: Lift h to A’ € ,G.
Gives list of Schur multipliers at higher levels:

def

-~ (4
((WYP" mod kerp4y) = Rii; — Grae.

Example 5.If Gog < Ap, n > 4, has nonsplit
pullback to Spin,, then G, (p =2; k> 1) has
antecendent Schur multiplier from level k£ = O.
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Obstruction and cusp growth
Lemma 6. No cusp in Ni(Gy1,C)'¥ over g €
Ni(Gr,C)d == a Schur Multiplier between
G and Gk—l—l and g* € Ni(G*, C) — g but

[* ] Ni(R*,C) — Ni(G*, C) does not hit g*
((9) My is obstructed).

Ifg € Ni(Gk, C)rd iSp/, no p/ cusp in Ni(Gk_|_]_, C)rd
over g —= a Schur multiplier between G;. and
Gr41 and either [*] holds, or over g

[** Jthere is no p’ g* € Ni(R*, C) (wd(g) grows).

For k£ large, so long as Mgy has dimension at
least 2 (basically from [GS78]), the multiplic-
ity of Schur multipliers between Gy and G4
grows. Finding which affect obstruction and
cusp width growth is necessary for a sequen-
tial genus computation.
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Effective computations

1. Lifting Invariant: For C a p’ conjugacy class:
ge CNR" — g e CNGy, sp(9) = g1(9293) 94
(= 9394(9293) 1) (9ag1)~1)gag1 if g is p').

2. sh-incidence symmetric matrix: List v~ Or-
bits (g)Cuys/Q" = O = Oy:

(5 |Om(0)71|> _ ( IOﬂ(O)fmI)_

e Blocks give components of H(G, C)".
e Fixed points of ~vg,v1 appear on diagonal.

3. Variants on formulas like those of [Se90a]
to go from level k to k4+1 when p = 2:
Example 7. (g)Cuy is a p’ cusp and orbits of
H> 3(g) have genus 0 in Ay > Gy with R* =
Gi XAy SPiny. Subex: g1.4 € Ni(Ag,C,32) =

((123),(134),(124),(124)) :

sp(92, 93, (9293)_1) = +1;
sp*(94,91, (gag1) ") = (-1)3E-D/E = 1.

My orbit of g1 4 is obstructed.
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Ni(Ag, C 32)3P5"d = Ni(Aq,C32)™d p=2

Nielsen class — Ni(As, C32)™: Entries by se-

quences of conjugacy classes, qlq3_1 and sh
switch these rows:

1] +-4- [2] ++-- [3] +--+

[4] -+-+ [8] --++ [6] -+ +-
sh-incidence: In O,f.fj, k is cusp width, 7,5 correspond to
orbit reps. Diagonal entries OF; (71 fixes 1, 79 none)
and Of, aren’'t empty (o and 7; fix nothing).

H-M rep. gy, = ((123),(132),(134),(143))
g13= ((123),(124),(142),(132))
H-Mrep.— g3, = ((123),(132),(143),(134))

Nig Orbit | 0f, | 0%.5 03,
O7 .1 1 1 2
L
073 1 0 1
03.4 2 1 0
Nig Orbit | O7.4 | 03.,| O3g
O7.4 2 1 1
L
05_{;4 1 0 0
O3 5 1 0 0
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Conclusions Ni(A4,C, 32)", p =2

1. Two components: HE)F and the obstructed
Ho (nothing above it at level 1), both genus
0 from (vg9,71,7Yc0) On reduced Nielsen classes.

2. Neither component is a Modular curve ([FrS03;
Prop. 4.16] applying Wohlfahrt's Thm.).

3. Consider either as an absolute space: Mod-
uli space of genus 1 curves. Birational embed-

ding: p € Hgbs’i’rd — @p: Xp — PL

— (j(®),j(Pic(Xp)(?)) € P} x P}

4. %—canonical classes: (dpp) = 2 - Dp, with
Dp §—canonical. Idea works for any odd ram-
ification maps: (d(ao pp))/2, a € PGL2(C),
lin. equiv. to Dp.

Case of Serre formula [Ser90b]: For p € HS‘
(resp. Hy ), Dp is even (resp. odd).

5. Q" orbits on Ni¥ have length 2: Hz™ not
fine moduli, but higher levels of MT are.
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Ni(Asg, Cg4)IMrd = Niion’rOI sh-incidence matrix
We show there is one M, orbit: Q" acts trivally.
Denote v orbits of

g1 =((123),(132),(145),(154)) and

g>=1((123),(132),(154),(145))
by Os:1 and Os:2; v00 Orbits of
((513),(245),(154),(123)) and

((324),(513),(154),(123))
by 03;1 and 03;2; and of (gl)Sh by 0172.

Orbit | O5;1 | O

-] O

1 O32 O

2

b

Q

w

=
R =L RPN O
= = = O NY
O OR —~W
OO Fr KKK
QOO K RmK

Conjugate by 2-cycle for Nigbs’rd: 3 4o Orbits

(widths 5, 3, 1) = monodromy group is Ag.
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Aim: Genus formulas from systems of g-p/
cusps: Level 1 of (As, C54)[BFr; §9]

Mo(As) = {(a1,...,ae) € (Z/2)°}/((1,1,1,1,1,1)) :
Generated by six Dg cosets, modulo sum of
cosets; MO(A5)‘A4 = Mp(Ay).
Three Ag conj. classes on My(As) \ {0}.
MJ5 — centralizes some 3-cycle (3 # 0q;5s).
Mg — centralizes some 5-cycle (1, or 5 # 0Og; S).
V' \ {0} — ker(Sping — Asg)
Unique Schur mult. quotient R] — G1(As) is
antecedent from Sping = Rj — As
Fix (91,92)€ (G1(A45))?—((123),(145))e(As)?.
H-M Perturbations{g, ,= (g1, agi *a, bg2b, g5 " )}.a, b€ Mo\V .
L. gop— Gap € Ni(R], Csz:),

gives lifting invariant sg.(g,,) = a% abb% .
2. 09 = ((123),(123),(145),(145)):

ADD|y [Se90a]: (Og)mp — 10 from
SRZ((]- 2 3)_1a (1 4 5), (1 32 45>_1) = (_1)2(32—1)/8-52—1)/8 — _1.

H-M reps. produce widest level 1 cusps (width 20).
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Level 1 of (As, C54)continued [BFr; Prop. 9.8]

The assumptions of [Se90a] are no longer even
close to valid. Yet we can compute:

1. SR*(ga p) = +1if (a,b) € ML x MEUME x M(;
38 Yoo orblts of width 20: 4 H-M reps., 4 near
H-M reps. (2 each over gg). This accounts for
Hf‘ — Ho of degree 16 and irreducible.

2. SR*(gab) = —1 if (a,b) € M5 x ML U M{ X
M3, 4 Yoo Orbits of width 20 (complements of
H-M reps.), 8 width 10 orbits (from Q" acts
nontrivially on (g, {(q2), Q" orbit shortening).

Conclusions: Genus: g(ﬂf’) =12, g(Hy) =09.

3. Real cusps are H-M or near H-M; one com-
ponent of real points on H7: and H(R) = 0.

4. For N = 40 (80, 120), G1(Ag) < Ay,
R] = G1(As) X4, Spiny: Apply [Se90b]: %—
canonical class for ﬁf’ even, for Hy odd.
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Level 1 of (A4,C 32), p=2

Using the Schur mult. of G1(A4) is (Z/2)?: So,
there are three Schur quotients: R* — G1(Ay).
Again use H-M perturbations: ker(R* — G1(Ay))
IS D1, Do, D3.

Given a Schur quotient D = Z/p = ker(R} —
Gp) define Vp < My: v € M, \ {0} that lift
to ¥ in R%, of order p, Vp = VJ U {0}, Mp =
ker(R}, — Gy).

[RIMSO02] Special case: Call D an abelian Schur
quotient if Mp is abelian. For k > 1, D is
abelian if and only if it is antecedent.

With K4 g a Klein 4-group (Hz = Z/3 acts),
" Loewy displays* for this case [FSe02; §2.3]:

Mp, :Kag — Kag ®©Z/4, Mp, Kag — Qs ®Z/2,
MD3 :K4,H — QS . Z/4
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Conclusions from level 1 of (A4, C32)

With O4 = ((Z/4)? x®H3) x4, Sping, Hp =
H(O4,Ci32)rd = H‘O" UH, @ two components
separated by lifting inv.: HE')' iIs an H-M comp.

Three components in H(G1(A4),C 52) over
Hg (resp. Hg): HT3, genus 3, HT1 HT?2
both genus 1 (resp. H—3 genus 3, H1:1 HT2
both genus 0, but complex conjugate).

Facts about H1T1, T2 p =HT1 corresponds
to (p: Xp — PLa: G(Xp/PL) ~ G1).

a. d3, outer automorphism of G1(A4) with

p= (pp,0) e HT1 = p' = (pp, Boa) e HT2

a'. Ht1 and HT2 are genus 1 degree 2 covers
of genus O Hg.

b. Only primes dividing discriminants of H11
and H7T:2 are those dividing |A4| (they have

fine moduli): j(HT1) = j(AT2) = 13—343.
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Summary: ...it can't be an accident that
from moduli space dessins d’enfant you get
genus O and 1 spaces with applications

Schur multipliers separated all but one pair of
components in these examples. A non-braided
outer automorphism of G1(A4) separated p. 22's
unusual pair of H-M rep. components. [FrVv02]
realized group extensions by assuring braidings
between outer autos. on Nielsen classes. We
have solidly explained this talk's components.

Nonsolvable group application: There are sim-
ilar spaces HT:%(As, C_,2) and in a nonobvious
way H1¢(As, C o) = HT(Ag,Cg2), i = 1,2
[BThO3]. Rational points here give only pos-
sibility for co-ly many (G1(Asg),p = 2) regular
Q realizations with r = 4 [BFr; §5].
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moduli space dessins d'enfant with
applications — Continued
Application of [An98]: From the level 0 em-
beddings in le. X le., only finitely many points

of H(A4, C32)"" and H(As, Cgsa)'™ (p = 2)
are special in the sense of Shimura. This hints
that for these MTs, one can expect a Serre-
type open image result on projective systems
of points of the fiber, with only finitely many
exceptions. [FrS03] explains the meaning.
Using Mazur’s Theorem: H(As, C34)2P5" x5
J

Pl has genus 1 and exactly 12 Q points, gen-
erated by the cusps. So, there are precisely
three X — P! degree 5 (As, C34) covers (up to
PGL>(Q) action) with branch points in Q.
Compare with Grothendieck-Teichmuller: Based
at a g-p’ (an H-M) cusp at level 0, consider all
projective systems of g-p’ components and the
G action (Ihara-Matusumoto-Wewers formu-
las) on projective systems of cusps. Example:
Use to explain the p-adic nature of the near
H-M reps. on the MTs presented in this talk
[BFr; App. D.3].
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