
Modular Towers:

(Pro-)finite Groups and Cusp Geometry

We start with a prime p dividing the order of a finite
group G = G0. This produces a projective system of
groups strikingly like the dihedral sequence {Dpk+1}∞k=0
(p. 7, 8). By recasting the regular Inverse Galois prob-
lem we produce Modular Towers (MTs). Its fundamen-
tal problems/results generalize those of modular curves
(the case G0 = Dp). MTs of higher rank (p. 7, 9), like
modular curves, allow topics where p varies.

We use a rank two MT to show how two of Serre’s
largest projects combine: Spin covers of alternating
groups; and his open image theorem for GQ acting on
projective systems of points on modular curves [Se90a],
[Se68]. This works best applied to MTs for p-perfect
groups in concert with g-p′ cusps (p. 12), generalizing
the previous notion of Harbater-Mumford cusps. Ex-
amples of reduced 4-branch point MTs (moduli dessins
d’enfants) show how Schur multipliers applied to g-p′

cusps control projective systems of components and
cusp ramification from level to level. Only for dihedral-
like groups do Schur multiplier effects disappear. We
apply these to two well-known problems to strengthen
the modular curve comparison (p. 24,25).
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Main source of talk topics

[FV92 ] M. Fried and H. Völklein, The embedding problem
over an Hilbertian-PAC field, Annals of Math 135
(1992), 469–481.

Our main example alludes to the technique relat-
ing inner and absolute Hurwitz spaces through outer
automophisms of finite groups. This has as a corol-
lary the only known presentation for GQ:

1 → F̃ω → GQ →
∞∏

n=2

Sn → 1.

[BFr02 ] with P. Bailey, Hurwitz monodromy, spin sepa-
ration and higher levels of a Modular Tower, in
Proceedings of Symposia in Pure Mathematics 70
(2002) editors M. Fried and Y. Ihara, 1999 von
Neumann Symposium on Arithmetic Fundamental
Groups and Noncommutative Algebra, August 16-
27, 1999 MSRI, 79–221.

[RIMS02 ] Moduli of relatively nilpotent extensions, Insti-
tute of Mathematical Science Analysis 1267, June
2002, Communications in Arithmetic Fundamental
Groups, 70–94.

[FrS03 ] with D. Semmen, Schur multiplier types and Shimura-
like systems of varieties, 20 pg. preprint, May 2003.
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Key inspirational papers appearing in talk

[Se68 ] J.-P. Serre, Abelian �-adic representations and
elliptic curves, 1st ed., McGill University Lecture
Notes, Benjamin, New York • Amsterdam, 1968, in
collaboration with Willem Kuyk and John Labute.

[Se90a ] J.-P. Serre, Relêvements dans Ãn, C. R. Acad.
Sci. Paris 311 (1990), 477–482.

[Ser90b ] J.-P. Serre, Revêtements á ramification impaire et
thêta-caractéristiques, C. R. Acad. Sci. Paris 311
(1990), 547–552.

[IM95 ] Y. Ihara and M. Matsumoto, On Galois actions on
profinite completions of braid groups, Proceedings
AMS-NSF Summer Conference, vol. 186, 1995,
Cont. Math series, Recent Developments in the
Inverse Galois Problem, 173–200.

[Fr04 ] M. Fried, Profinite geometry: Higher rank Modu-
lar Towers (MTs): slides for a Luminy talk, March,
2004. Outlines a proof of the weak Main Conjec-
ture, and conjectures how g-p′ cusps describe limit
projective sequences of MT components.

www.math.uci.edu/ m̃fried/talkfiles/lum03-12-04.html
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Others supporting sources

[An98 ] Y. André, Finitude des couples d’invariants modu-
laires singuliers sur une courbe algébrique plane non
modulaire, Crelle’s J. 505 (1998), 203–208.

[BTh03 ] P. Bailey, Incremental ascent of a Modular Tower
via branch cycle designs, PhD Thesis, UCI Irvine
2003.

[GS78 ] R. Griess and P. Schmid, The Frattini module,
Archiv. Math. 30 (1978), 256266.

[FrJ86 ] M. Fried and M. Jarden, Field arithmetic, Ergeb-
nisse der Mathematik III, vol. 11, Springer Verlag,
Heidelberg, 1986.

[DFr90 ] P. Dèbes and M. Fried, Rigidity and real residue
class fields, Acta Arith. 56 (1990), 13–45.

[FrK97 ] M. Fried and Y. Kopeliovic, Applying Modular
Towers to the inverse Galois problem, Geometric
Galois Actions II Dessins d’Enfants, Mapping Class
Groups . . . , vol. 243, Cambridge U. Press, 1997,
London Math. Soc. Lecture Notes, pp. 172–197.
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Modular Towers: Durham, Sept. 5 2003

Riemann sphere: P1
z = Cz ∪ {∞}, for

zzz = z1, . . . , zr ⊂ P1
z , P1

z \ {zzz} = Uzzz.

Modular Tower (MT): Sequence of moduli spaces;
generalize sequences of modular curves. Levels
are moduli spaces of covers from finite group
G, prime p dividing |G| and p′ conjugacy classes
C (in G, r of them; we take r = 4).

Construction depends on the universal p-Frattini
cover of G (Pierre Debes’ talk). This collects
otherwise unknowable finite groups into a us-
able structure. Two tools allow comparison
with general dessins d’enfant:

• The sh-incidence pairing on cusps;

• lifting invariants from Schur multipliers of
the universal p-Frattini cover quotients.

Nielsen class combinatorics allow MT level com-
putations using the geometry of their cusps.
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Nielsen classes:

Group G with r conjugacy classes C = (C1, . . . ,Cr):

Ni(G,C) = {ggg ∈ C | 〈ggg〉 = G,
r∏

i=1

gi = 1}

�→ Ni(G,C)/NSn(G,C) (absolute classes) or �→
Ni(G,C)/G (inner classes).

Three example Nielsen classes:

• Ni(Gk(Dp),C24)abs,rd (or Ni(Gk(Dp),C24)in,rd:
4 involutions in Dp (p odd). Case p of a
rank 1 Modular Tower (modular curves).

• Simple group MT from Ni(Gk(A5),C34):
Four 3-cycles in A5. Rank 0 MT for p = 2.

• Tower akin to other two: Ni(Gk(A4),C±32):
Rational union of four 3-cycles in A4. Rank
2 MT for p = 2.
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Forming Gk(G) for p | |G|

Finite group H acts on rank t lattice L or

finitely generated free group F (L or F may

be trivial): C generating conjugacy classes for

H. Avoid p dividing order of elements in C.

For serious results: Finite quotient groups are

p-perfect (no Z/p quotient).

Pro-p group P̃ has a Frattini subgroup Φ(P̃ )

generated by its pth powers and commutators.

Consider the pro-p completion pF of F (or L).

Case 1: p � | |H|, =⇒ H action on P̃ /Φ(P̃ )

extends to P̃ . pF ×sH is Universal p-Frattini

cover of pF/Φ(pF )×sH = G = G0: p-slit case.

Case 2: For any finite group G and each prime

p, p | |G|, there is a universal p-Frattini cover

ψp : pG̃ → G.

Example 1. Rank 1, D∞: Z×s{±1} = Z×sH2.
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Frattini Properties

1. Profreeness: ker(ψp) = ker0 and a p-Sylow

of pG̃ are pro-free pro-p and pG̃ is the mini-

mal such profinite cover of G [FrJ; Chap. 21].

2. Characteristic sequences: {Gk}∞k=0, {Mk}∞k=0:

kerk+1 = Φ(kerk), Gk = pG̃/ kerk,

Mk = ker(Gk+1 → Gk) a Gk module.

3. Subgroup properties:
• p′ classes of G �→ p′ classes of pG̃.

• Frattini:G∗≤Gk,ψk,0(G
∗)=G0=⇒G∗=Gk.

• Order pu (u ≥ 1) conj. classes of Gk lift

to order pu+1 classes of Gk+1.

4. M0(G): p-Sylow P of G: Indecomposable

summand of IndG
NG(P )(M0(NG(P ))) that maps

to M0(NG(P )) [MT1-95, RIMS02]

5. Remaining Centerless: G0 p-perect and cen-

terless =⇒ so is Gk, k ≥ 0 [FrK97]

8



Four 3-cycles

Example 2 (Rank two action). H = H3 =

Z/3 acts on a free group F2 with generators

vvv1, vvv2: 〈µ〉 def
= Z/3 by µ : (vvv1, vvv2) �→ (vvv−1

2 , vvv1vvv
−1
2 ).

Use the conjugacy classes C±32: Four conju-

gacy classes of elements of order 3, two map to

µ ∈ Z/3 and two map to −µ. Avoid only p = 3:

Gk above is Gk((Z/p)2) ×sH3. Use a copy of

H3 in Gk((Z/p)2) ×sH3 for each k (p �= 3) to

define absolute classes.

The collection of conjugacy classes in both ex-

amples is a rational union. All spaces formed

from a Nielsen class Ni(G,C) where C is a ra-

tional union have equations over Q [FrV92].

Proposition 3. Ni(Gk((Z/p)2) ×s H3,C±32) is

nonempty. Covers in the inner classes form

a space analogous to X1(p
k+1); in absolute

classes analogous to X0(p
k+1) (cosets of H3).
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Harbater-Mumford (H-M) reps. in Prop. 3

H-M reps. k ≥ 0:

(kg1, kg−1
1 , kg2, kg−1

2 ) ∈ Ni(Gk,C±32).

Since Gk is a Frattini cover of G0, kg1, kg2 any

order 3 lifts to Gk of generating order 3 g1, g2 ∈
G0. No invariant subspaces for H on (Z/p)2.

Take g1 = (0, µ) and g2 = (vµ − v, µ) for any v

not commuting with µ.

Braid action on Nielsen classes

Combinatorics for r = 4 that allows computing

properties of MT levels comes from the action

of 〈q1, q2, q3〉 on Ni(G,C) inducing an action on

reduced Nielsen classes. Here is the action of

q2 : (g1, . . . , g4) �→ (g1, g2g3g−1
2 , g2, g4).

Form: γ0 = q1q2, γ1 = q1q2q3 = sh, γ∞ = q2.
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Upper half plane quotient covers

Three important groups:Q′′=〈sh2, q1q−1
3 〉; the

cusp group Cu4 = 〈q2,Q′′〉; and M̄4 = 〈γ0, γ1〉
generated freely by elements of order 3 and 2.

γ0, γ1, γ∞ on Ni(G,C)rd = Ni(G,C)/Q′′ (reduced
Niel. classes) gives H(G,C)rd → P1

j branch cy-
cles. γ s from Debes-Fried cuts [DFr90] [BFr02,
§6] to match complex conjugation operator for
two pairs of complex conjugate branch points.

ppp ∈ H(G,C)rd is an equivalence class of cov-
ers in Ni(G,C): ramification indices over 0 di-
vide 3, over 1 divide 2. Orbits of γ∞ corre-
spond to cusps; orbits of M̄4 to components
of H(G,C)rd.

G0 = A5 and F trivial

Use p = 2 and C = C34, four conjugacy classes
of elements of order 3. Absolute equivalence:
Cosets of A4, genus 0 family with 4 ramified
points xxx on each member.

ppp ∈ H(G,C)abs,rd �→ (j(zzzppp), j(xxxppp)) ∈ P1
j × P1

j )
embeds. Yet, not a modular curve (below).
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The Main Conjectures

• Weak conjecture: If G is p-perfect, no ra-
tional points at high levels of Ni(G,C)in,rd

Modular Tower ⇔ No genus 0 or 1 com-
ponents at high levels [BFr; Thm. 6.1].

• Strong conjecture: Running over p-perfect
primes attached to a Modular Tower of ar-
bitrary rank, only finitely many levels have
genus 0 or 1 components.

• The structure of Frattini central extensions
of finite group appears in properties of lev-
els of MTs: Components and cusp growth.

Remainder of talk: How g-p′-cusps generalize
H-M reps. to give structure for assigning cusps
(〈γ∞〉 orbits) to components (M̄4 orbits) in lev-
els of the (G0,C) MT. Especially: For our main
examples, how to account for all components
at levels 0 and 1 from either Schur multipliers
or the main technique behind [FrV92].
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Types of cusps

A cusp corresponds to (ggg)Cu4/Q′′ ⊂ Ni(G,C)rd:

wd(ggg)
def
= |(ggg)Cu4/Q′′|, cusp width. Cusp Types:

p′ cusps: p � |(ggg)mp
def
= ord(g2g3); and

g-p′ cusps:H2,3(ggg)=〈g2, g3〉 andH1,4(ggg)=〈g1, g4〉
are p′ groups. Usually:H2,3(ggg)∩H1,4(ggg)=〈g2g3〉.

• Both p′ and g-p′ cusps are Cu4 invariants.

• In a MT, each g-p′ cusp has a projective

sequence of g-p′ cuspsoverit (Schur-Zass.).

Example 4.For H-M rep. ggg = (g1, g−1
1 , g2, g−1

2 ),

(ggg)sh has width 1 or 2 (p = 2 and k ≥ 1,

wd((ggg)sh) = 2 for inner reduced classes) and

H2,3(ggg) ∩ H1,4(ggg) = 〈1〉. Projective sequences

of H-M reps. {kggg ∈ Ni(Gk,C)rd}∞k=0 should

have their width grow as cpk (k large; while

shifts (kggg)sh have width ≤ 2). Checking width

growth requires analysis with Schur multipliers.
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Schur Multipliers

G0 p-perfect =⇒ pG̃ → G0 quotients have

universal central p-extensions. Assume R∗ in

Gk+1→R∗→Gk (head ofMk=ker(ψk+1,k)) and

〈h′〉 = ker(R∗ → Gk) = 111Gk
← Schur quotient.

Generally, Schur quotients can occur anywhere

between Gk+1 and Gk as R∗ → G∗ → Gk, though

those at the head play a special role [FrS03,

§4]. Always: Ni(R∗,C) → Ni(G∗,C) is injective.

Quotient with Antecedents: Lift h to ĥ′ ∈ pG̃.

Gives list of Schur multipliers at higher levels:

〈(ĥ′)pt
mod kerk+t〉

def
= R∗

k+t → Gk+t.

Example 5. If G0 ≤ An, n ≥ 4, has nonsplit

pullback to Spinn, then Gk (p = 2; k ≥ 1) has

antecendent Schur multiplier from level k = 0.
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Obstruction and cusp growth

Lemma 6. No cusp in Ni(Gk+1,C)rd over ggg ∈
Ni(Gk,C)rd =⇒ a Schur Multiplier between

Gk and Gk+1 and ggg∗ ∈ Ni(G∗,C) �→ ggg but

[* ] Ni(R∗,C) �→ Ni(G∗,C) does not hit ggg∗

((ggg)M̄4 is obstructed).

If ggg ∈ Ni(Gk,C)rd is p′, no p′ cusp in Ni(Gk+1,C)rd

over ggg =⇒ a Schur multiplier between Gk and

Gk+1 and either [*] holds, or over ggg

[** ]there is no p′ ĝgg∗∈Ni(R∗,C) (wd(ggg) grows).

For k large, so long as M0 has dimension at

least 2 (basically from [GS78]), the multiplic-

ity of Schur multipliers between Gk and Gk+1

grows. Finding which affect obstruction and

cusp width growth is necessary for a sequen-

tial genus computation.
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Effective computations

1. Lifting Invariant: For C a p′ conjugacy class:
ĝ ∈ C ∩ R∗ �→ g ∈ C ∩ Gk, sR∗(ggg) = ĝ1(ĝ2ĝ3)ĝ4
(= ĝ3ĝ4(ĝ2g3)

−1)(ĝ4g1)
−1)ĝ4ĝ1 if ggg is p′).

2. sh-incidence symmetric matrix: List γ∞ or-
bits (ggg)Cu4/Q′′ = O = Oggg:

( ... |O∩(O)γ1|
· ···

)
=

( ... |O∩(O)γ0|
· ···

)
.

• Blocks give components of H(G,C)rd.

• Fixed points of γ0, γ1 appear on diagonal.

3. Variants on formulas like those of [Se90a]
to go from level k to k+1 when p = 2:
Example 7. (ggg)Cu4 is a p′ cusp and orbits of
H2,3(ggg) have genus 0 in AN ≥ Gk with R∗ =
Gk ×AN

SpinN . Subex: g1,4 ∈ Ni(A4,C±32) =

((123), (1 34), (1 24), (1 24)) :
sR∗(g2, g3, (g2g3)

−1) = +1;
sR∗(g4, g1, (g4g1)

−1) = (−1)3·(32−1)/8 = −1.

M̄4 orbit of g1,4 is obstructed.
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Ni(A4,C±32)abs,rd = Ni(A4,C±32)in,rd, p = 2

Nielsen class �→ Ni(A3,C±32)rd: Entries by se-

quences of conjugacy classes, q1q−1
3 and sh

switch these rows:

[1] + -+ - [2] ++ - - [3] + - -+
[4] -+ -+ [5] - -++ [6] -++ -

sh-incidence: In Ok
i,j, k is cusp width, i, j correspond to

orbit reps. Diagonal entries O4
1,1 (γ1 fixes 1, γ0 none)

and O4
1,4 aren’t empty (γ0 and γ1 fix nothing).

H-M rep. �→ ggg1,1 = ((123), (132), (1 34), (143))
ggg1,3 = ((123), (124), (1 42), (132))

H-M rep. �→ ggg3,1 = ((123), (132), (1 43), (134))

Ni+0 Orbit O4
1;1 O2

1;3 O3
3;1

O4
1;1 1 1 2

O2
1;3 1 0 1

O3
3;1 2 1 0

Ni−0 Orbit O4
1;4 O1

3;4 O1
3;5

O4
1;4 2 1 1

O1
3;4 1 0 0

O1
3;5 1 0 0
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Conclusions Ni(A4,C±32)rd, p = 2

1. Two components: H+
0 and the obstructed

H−
0 (nothing above it at level 1), both genus

0 from (γ0, γ1, γ∞) on reduced Nielsen classes.

2. Neither component is a Modular curve ([FrS03;
Prop. 4.16] applying Wohlfahrt’s Thm.).

3. Consider either as an absolute space: Mod-
uli space of genus 1 curves. Birational embed-
ding: ppp ∈ Habs,±,rd

0 ↔ ϕppp : Xppp → P1
z

�→ (j(ppp), j(Pic(Xppp)
(0))) ∈ P1

j × P1
j .

4. 1
2-canonical classes: (dϕppp) = 2 · Dppp, with

Dppp
1
2-canonical. Idea works for any odd ram-

ification maps: (d(α ◦ ϕppp))/2, α ∈ PGL2(C),
lin. equiv. to Dppp.

Case of Serre formula [Ser90b]: For ppp ∈ H+
0

(resp. H−
0 ), Dppp is even (resp. odd).

5. Q′′ orbits on Ni±0 have length 2: H±,rd
0 not

fine moduli, but higher levels of MT are.
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Ni(A5,C34)in,rd = Niin,rd
0 sh-incidence matrix

We show there is one M̄4 orbit: Q′′ acts trivally.

Denote γ∞ orbits of

ggg1 = ((123), (1 32), (1 45), (1 54)) and

ggg2 = ((123), (1 32), (1 54), (1 45))

by O5;1 and O5;2; γ∞ orbits of

((5 13), (2 45), (1 54), (1 23)) and

((324), (5 13), (1 54), (1 23))

by O3;1 and O3;2; and of (ggg1)sh by O1,2.

Orbit O5; 1 O5;2 O3;1 O3;2 O1,2
O5;1 0 2 1 1 1
O5;2 2 0 1 1 1
O3;1 1 1 0 1 0
O3;2 1 1 1 0 0
O1,2 1 1 0 0 0

Conjugate by 2-cycle for Niabs,rd0 : 3 γ∞ orbits
(widths 5, 3, 1) =⇒ monodromy group is A9.
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Aim: Genus formulas from systems of g-p′

cusps: Level 1 of (A5,C34)[BFr; §9]

M0(A5) = {(a1, . . . , a6) ∈ (Z/2)6}/〈(1,1,1,1,1,1)〉 :

Generated by six D5 cosets, modulo sum of
cosets; M0(A5)|A4

= M0(A4).

Three A5 conj. classes on M0(A5) \ {000}.
M ′

3 – centralizes some 3-cycle (3 �= 0ai s).

M ′
5 – centralizes some 5-cycle (1, or 5 �= 0ai s).

V \ {000} → ker(Spin5 → A5)

Unique Schur mult. quotient R∗
1 → G1(A5) is

antecedent from Spin5 = R∗
0 → A5

Fix (g1, g2)∈(G1(A5))
2�→((1 23), (1 45))∈(A5)

2.

H-MPerturbations:{ggga,b=(g1, ag−1
1 a, bg2b, g

−1
2 )},a, b∈M0\V .

1. ggga,b �→ ĝgga,b ∈ Ni(R∗
1,C34),

gives lifting invariant sR∗
1
(ggga,b) = âg−1

1 â̂b̂bg−1
2 .

2. 0ggg = ((123), (123), (1 45), (145)):

Apply [Se90a]: (0ggg)mp = 10 from
sR∗

0
((1 23)−1, (145), (1 3245)−1)=(−1)2·(32−1)/8·52−1)/8 = −1.

H-M reps. produce widest level 1 cusps (width 20).
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Level 1 of(A5,C34)continued [BFr; Prop. 9.8]

The assumptions of [Se90a] are no longer even
close to valid. Yet we can compute:

1. sR∗
1
(ggga,b) = +1 if (a, b) ∈ M ′

3×M ′
3∪M ′

5×M ′
5;

8 γ∞ orbits of width 20: 4 H-M reps., 4 near
H-M reps. (2 each over 0ggg). This accounts for
H+

1 → H0 of degree 16 and irreducible.

2. sR∗
1
(ggga,b) = −1 if (a, b) ∈ M ′

3 × M ′
5 ∪ M ′

5 ×
M ′

3; 4 γ∞ orbits of width 20 (complements of
H-M reps.), 8 width 10 orbits (from Q′′ acts
nontrivially on (ggga,b〈q2〉, Q′′ orbit shortening).

Conclusions: Genus: g(H̄+
1 ) = 12, g(H̄−

1 ) = 9.

3. Real cusps are H-M or near H-M; one com-
ponent of real points on H̄+

1 ; and H̄−
1 (R) = ∅.

4. For N = 40 (80, 120), G1(A5) ≤ AN ,
R∗

1 = G1(A5) ×AN
SpinN : Apply [Se90b]: 1

2-

canonical class for H̄+
1 even, for H̄−

1 odd.
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Level 1 of (A4,C±32), p = 2

Using the Schur mult. of G1(A4) is (Z/2)2: So,

there are three Schur quotients: R∗ → G1(A4).

Again use H-M perturbations: ker(R∗ → G1(A4))

is D1, D2, D3.

Given a Schur quotient D = Z/p = ker(R∗
D →

Gk) define VD ≤ Mk: v ∈ Mk \ {0} that lift

to v̂ in R∗
D of order p, VD = V 0

D ∪ {0}, M̂D =

ker(R∗
D → Gk).

[RIMS02] Special case: Call D an abelian Schur

quotient if M̂D is abelian. For k ≥ 1, D is

abelian if and only if it is antecedent.

With K4,H a Klein 4-group (H3 = Z/3 acts),

”Loewy displays“ for this case [FSe02; §2.3]:
M̂D1

:K4,H → K4,H ⊕ Z/4, M̂D2
:K4,H → Q8 ⊕ Z/2,

M̂D3
:K4,H → Q8 · Z/4.
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Conclusions from level 1 of (A4,C±32)

With Ô4 = ((Z/4)2 ×s H3) ×A4
Spin4, HO =

H(Ô4,C±32)rd = H+
O ∪ H−

O : two components

separated by lifting inv.: H+
O is an H-M comp.

Three components in H(G1(A4),C±32) over

H+
O (resp. H−

O): H+,3, genus 3, H+,1,H+,2

both genus 1 (resp. H−,3 genus 3, H+,1,H+,2

both genus 0, but complex conjugate).

Facts about H+,1,H+,2: ppp = H+,1 corresponds

to (ϕppp : Xppp → P1
z , α : G(Xppp/P1

z) " G1).

a. ∃β, outer automorphism of G1(A4) with

ppp = (ϕppp, α) ∈ H+,1 �→ ppp′ = (ϕppp, β ◦ α) ∈ H+,2.

a’. H+,1 and H+,2 are genus 1 degree 2 covers

of genus 0 H+
O .

b. Only primes dividing discriminants of H+,1

and H+,2 are those dividing |A4| (they have

fine moduli): j(H̄+,1) = j(H̄+,2) = 133

34 .
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Summary: . . . it can’t be an accident that

from moduli space dessins d’enfant you get

genus 0 and 1 spaces with applications

Schur multipliers separated all but one pair of

components in these examples. A non-braided

outer automorphism of G1(A4) separated p. 22’s

unusual pair of H-M rep. components. [FrV02]

realized group extensions by assuring braidings

between outer autos. on Nielsen classes. We

have solidly explained this talk’s components.

Nonsolvable group application: There are sim-

ilar spaces H̄+,i(A5,C±52) and in a nonobvious

way H̄+,i(A5,C±52) = H̄+,i(A4,C±32), i = 1,2

[BTh03]. Rational points here give only pos-

sibility for ∞-ly many (G1(A5), p = 2) regular

Q realizations with r = 4 [BFr; §5].
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moduli space dessins d’enfant with
applications – Continued

Application of [An98]: From the level 0 em-
beddings in P1

j × P1
j , only finitely many points

of H(A4,C±32)in,rd and H(A5,C34)in,rd (p = 2)
are special in the sense of Shimura. This hints
that for these MTs, one can expect a Serre-
type open image result on projective systems
of points of the fiber, with only finitely many
exceptions. [FrS03] explains the meaning.
Using Mazur’s Theorem: H̄(A5,C34)abs,rd ×

P1
j

P1
λ has genus 1 and exactly 12 Q points, gen-

erated by the cusps. So, there are precisely
three X → P1

z degree 5 (A5,C34) covers (up to
PGL2(Q) action) with branch points in Q.
Compare with Grothendieck-Teichmüller: Based
at a g-p′ (an H-M) cusp at level 0, consider all
projective systems of g-p′ components and the
GQ action (Ihara-Matusumoto-Wewers formu-
las) on projective systems of cusps. Example:
Use to explain the p-adic nature of the near
H-M reps. on the MTs presented in this talk
[BFr; App. D.3].
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