
Profinite geometry:

Higher rank Modular Towers (MTs)

Luminy, March 12, 2004

• Matthieu Romagny and Stefan Wewers introduced
Nielsen classes and material on Hurwitz spaces.

• Helmut Voelklein and Kay Magaard introduced Hur-
witz monodromy action,necessary for computations.

• Pierre Debes defined a (rank 0) Modular Tower
(MT), comparing that with modular curves.

• The (weak; rank 0) Main Conjecture is that there
are no rational points at suitably high levels. Pierre
reduced this conjecture, for four branch point tow-
ers, to showing the genus rises with the levels.

• Darren Semmen presented the profinite Frattini cat-
egory. This showed how Schur multipliers control
properties of the Modular Tower levels.

Riemann sphere: P1
z = Cz ∪ {∞}, for

zzz = z1, . . . , zr ⊂ P1
z , P1

z \ {zzz} = Uzzz.

1



Introductory set up of Tasks

T1. MTs is an answer to difficult questions:

T1.a. Why is the Inverse Galois Problem so difficult?

T1.b. How is the Inverse Galois Problem related to
other problems people find deep or important?

T2. There has been serious progress on MTs.

T2.a. Structure shows cases of the Main Conjecture.

T2.b. Specific MT levels give positive results.

Frattini extensions of a finite group G lie behind MTs.
The key data, a reduced Nielsen class defined by a prime
p dividing |G| and r (p′) conjugacy classes

C = (C1, . . . ,Cr).

Characteristic sequence of p-Frattini covers of G = G0:

{Gk = pG̃/Φk(P̃p)}∞k=0 with P̃p = ker(pG̃ → G).

[RIMS02; §2.2]: How to find rank of pro-p, pro-free P̃p.

Pierre presented [FrK97; Thm. 4.4]:

Proposition 1. Assume for some r0 there are Q regular
realizations of all of the {Gk}∞k=0, with at most r0 branch
points. Then, there exists a MT with rC ≤ r0 where
every level has a Q point.

Weak Main Conjecture:When G0 is p-perfect, you can’t
have such Q points at every level.
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Four Talk Parts

From here r = 4: MT levels are j-line covers.

I. Tools for computing cusp widths and ellip-

tic ramification of the levels.

II. T1, Outline r = 4: Main Conjecture holds.

III. Explain the Strong Main Conjecture.

IV. T2: Produce MT components that apply

to significant problems.

A rank 2 MT attached to F2 ×s Z/3 shows

structure on specific tower levels. [Dur03],

[FrS03] go beyond examples.

App. A. has a MT attached to F2 ×s Z/2: In-

terprets as Serre’s O(pen)I(mage)T(heorem).

MT levels are rarely modular curves: Not quo-

tients of congruence subgroups of PSL2(Z).

Yet, modular curve thinking guides their use.
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I. Knowing about a MT level

Pierre’s talk, given (G0,C, p) with p′ classes C:

• Gives projective sequence {Hk}∞k=0, of in-
ner reduced Hurwitz spaces; each an upper
half-plane quotient and U∞ = P1

j \∞ cover.

• Weak conjecture reduction: For large k, all
components of H̄k have genus exceeding 1.

What you need to compute the genuses!

• What are the Hk components.

• What are the cusp (points over ∞) widths
in each component.

• What points ramify in each component over
the elliptic points (j = 0 or 1).

Dictionary: Reduced Nielsen classes let us cal-
culate components, cusp and elliptic ramifica-
tion. We’ll see how the Frattini property con-
trols growth of cusp widths with k.

4



Nielsen classes

Ni(G,C) = {ggg ∈ C | 〈ggg〉 = G,
∏r

i=1 gi = 1}
�→ Ni(G,C)/NSn(G,C) (absolute)

or �→ Ni(G,C)/G (inner) classes.

Elements qi, i = 1,2,3. Each acts by a twisting

on any 4-tuple in a Nielsen class. Example:

q2 : ggg �→ (ggg)q2 = (g1, g2g3g−1
2 , g2, g4).

Reduced equivalence: For α ∈ PGL2(C), cover

ϕ : X → P1
z ⇒ α ◦ ϕ : X → P1

z ; preserves j = jzzz-

invariant of branch point set zzz = zzzϕ.

Equivalence on Nielsen classes: Klein 4-group

in PGL2(C) leaves the branch point set zzz fixed

⇔ mod out by Q′′ = 〈(q1q2q3)
2, q1q−1

3 〉.

Hurwitz monodromy: H4 = 〈q1, q2, q3〉.

Mapping class: H4/Q′′ ≡ PSL2(Z) = M̄4 =

〈γ0, γ1, γ∞〉, γ0 = q1q2, γ1 = sh = q1q2q3, γ∞ = q2,
Satisfying product-one: γ0γ1γ∞ = 1.
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Reduced Nielsen classes and cusps

Absolute reduced (resp. inner reduced) reps.:

Ni(G,C)/〈NSn(G,C),Q′′〉 = Niabs,rd and
Ni(G,C)/〈G,Q′′〉 = Niin,rd.

Cusp group: Cu4=〈q2,Q′′〉.

Running over ggg ∈ Ni(Gk,C)in,rd:

• Cusps on H̄k ⇔ (ggg)Cu4.

• Components on H̄k ⇔ (ggg)M̄4.

(γ0, γ1, γ∞) on a M̄4 orbit ⇔ branch cycles for

a component of H̄(G,C)rd → P1
j .

• Ramified points over 0 ⇔ orbits of γ0.

• Ramified points over 1 ⇔ orbits of γ1.
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II. Main Conjecture rubric on cusps

Assume projective system of components:

{H̄′
k}∞k=0 ⇔ M̄4 orbit Ni′k.

Genus 0: Restricted γ s, (γ′0,k, γ′1,k, γ′∞,k), with

(∗) 2(deg(H̄′
k/P1

j )− 1) =

ind(γ′0,k) + ind(γ′1,k) + ind(γ′∞,k).

ind(γ′∞,k) = sum over cusps |(ggg)Cu4/Q′′| − 1.

p′ Cusp Types:g(roup)-p′:H2,3(ggg)=〈g2, g3〉 and
H1,4(ggg)=〈g1, g4〉 are p′ groups.

o(nly)-p′:p � |(ggg)mp
def
= ord(g2g3), but not g-p′.

H(arbater)-M(umford) reps:ggg = (g1, g−1
1 , g2, g−1

2 ),
(ggg)sh has width 1 or 2 (p = 2, k ≥ 1: width 2
for inner reduced) and H2,3(ggg)∩H1,4(ggg) = 〈1〉.

Frattini Cusp Principle 1 [BFr02; §8.1]:

kggg = (kg1, . . . , kg4) ∈ Ni′k :

If pu|ord(kg2kg3) = (kggg)mp, u ≥ 1, then

pu+1|(k+1ggg)mp for any k+1ggg over kggg.
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Cusp growth expections

Outline how cusp growth contradicts (*):
Assume non-p′ cusp ppp′k ∈ H′

k, νk = [H′
k+1 : H′

k].

Any of uk primes ppp′k+1 ∈ H′
k+1 over ppp′k has

ramification order p (νk = p · uk). Same for
each ppp′k+2 ∈ H′

k+2 over a ppp′k+1.

• Index contribution of all ppp′k+2 s to R-H from
H′

k+2 to H′
k+1 is uk · uk+1 · (p − 1).

• Exceeds 2(p ·uk+1−1) if uk is “moderate.”

Subtler points:

• What if H′
k+1 → H′

k resembles maps from
degree p polynomials fk ∈ Q[x]?

• What forces any non-p′ cusps?
How about contributions of γ′0, γ′1?

• What happens at low levels?
Is it just like modular curves?

• What controls sequences {H̄′
k}∞k=0;

figuring p′ cusps on them?
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III. Strong Conjecture for r = 4

[FrS; §6.1] computes genus of X0(p
k+1) and

X1(p
k+1) as MT levels. X1 (inner) case:

1. One M̄4 orbit.

2. Role of H-M rep. (width pk+1) and shift of

H-M rep. cusps (g-p′ cusps, width 1).

3. No fixed points to γ′0 or γ′1.

4. Q′′ acts trivially at all levels.

[FrS; Prop. 8.4] generalizes #3 and #4: MT

version of Serre’s abelian variety lemma: Only

identity fixes many torsion points.

Group setup for Strong Main Conjecture:

Fu free of rank u: Fu ×s J, J faithful action,

C = (C1, . . . ,C4) conjugacy classes in J.

Form F̃u,p, pro-p, pro-free completion;

Φt = Φt
p, tth Frattini quotient of F̃u,p.
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Nonempty Nielsen classes

PC (resp. P ′
C) those primes p with

• (p, |J |) �= 1(resp.p|ord(g)) some g ∈C), and

• F̃u,p/Φ1 ×sJ is not p-perfect.

For p �∈ PC, denote nontrivial (finite) J quo-
tients of F̃u,p by Vp(J).

Problem 2. Running over p �∈ PC, V ∈ Vp(J):
Which Ni(V ×sJ,C)in are nonempty.

Form collection Gp of maximal projective (p-
Nielsen) limits of groups over nonempty Nielsen
classes. (There are P ′

C versions of this.)

Problem 3. What are the G̃∗ ∈ Gp, p �∈ PC?
What are the M̄4 orbits on Ni(G̃∗,C)in,rd?

Examples:u = 2, |J | is a prime.

• J2=Z/2 ={±1} generator maps xi �→ x−1
i ,

i = 1,2; C = C24, 4 reps. of -1.
(App.A:nonempty⇔V abelian;Serre’s OIT.)

• J3 = Z/3 = 〈α〉 generator maps x1 �→ x−1
2 ,

x2 �→ x1x−1
2 ;C= C±32, two each of α,α−1.

(App. B: All Nielsen classes nonempty).
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Strong Main Conjecture: u ≥ 0, r = 4 MTs

PC Conjecture:Over all p �∈ PC, for only finitely

many V ∈ Vp(J), does H(V ×s J,C)in,rd have

genus 0 or 1 component.

Frattini Cusp Principle 2 [FrS03; Prop. 5.1]:

p′ and g-p′ cusps don’t depend on the choice

of representative in (ggg)Cu4. If (ggg)Cu4 is g-p′ in
H(G,C)rd, level 0 of a MT, then:

• ∃ g-p′ lifts kggg ∈ Ni(Gk,C) of ggg;

• none of g-p′ components is obstructed.

Modular curve comparison for Serre’s OIT:

• {X1(p
k+1)}∞k=0 proj. systems over j′ ∈ Qp

near ∞: H-M reps.=⇒ transvections in GQp
.

• p-Frattini monodromy (PSL2(Z/pk+1)) for

X1(p
k+1) → P1

j crucial to OIT.
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IV. Modular curve-like systems of components

• Proj. systems {H(Gk,C)′ �= ∅}∞k=0 of MT
components should be g-p′ components.

• For k large, outer autos. of Gk should con-
jugate all g-p′ components on H(Gk,C).

• For k large, {H̄(Gk,C)′ → P1
j }∞k=0 mon-

odromy gps. should be a p-Frattini system.

• For k large, genuses of {H̄(Gk,C)′}∞k=0 should
have a modular curve-like formula, coming
from clear understanding of g-p′ cusps and
disappearance of o-p′ cusps.

We left out 3 biggest topics: [BFr02], [FrS03]

• Schur multipliers of Gk s produce many ob-
structed components, generalizing Serre’s
spin lifting project for alternating groups.

• Schur multipliers force sequences of p′ (not
g-p′) cusps to become non-p′.
Conjecture: This is a general phenomenon.

• Genus 0 and 1 components appearing at
low levels have many applications (each of
interest to their own specialists).
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F2 ×sZ/3, p = 2: Level 0, 1 components

Level 0: H(F̃2,2/Φ1×sJ3,C±32)in,rd = H+
0 ∪H−

0 ,
both genus 0, one H-M, other not.

André’s Thm. [An98],[Dur03, p. 15-18]:
(*) Has < ∞ Shimura-special points (unlike J2
case). Uses sh-incidence matrix cusp pairing
on reduced spaces.

Conjecture: (*) is true for all other p �= 3.

Level 1: H(F̃2,2/Φ2 ×s J3,C±32)in,rd → H+
0 :

2 genus 0 H−,c
1 ,H−,c′

1 , complex conjugate and

spin obstructed; 2 genus 3, H+,3
1 ,H−,3

1 , one
spin obstructed, the other obstructed by an-
other Schur multiplier; 2 genus 1, H+,β

1 , H+,β−1

1
both H-M comps ([BTh03], [FrS03]).

Significance of H+,β
1 , H+,β−1

1 :

• Out(F̃2,2/Φ2×sJ3) conjugates H+,β
1 toH+,β−1

1 .

• Only chance for ∞-ly many r = 4 regular
realizations of maximal Frattini extension
of A5 by elementary 2-group.
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App. A: Nielsen classes for F2 ×sZ/2 (p. 10)

Complete F4 = 〈σσσ = {σ1, . . . , σ4}〉, modulo
σ1σ2σ3σ4 = 1 (product-one). Denote by F̂σσσ.
Proposition 4. Let D̂σσσ be quotient of F̂σσσ by

σ2
i = 1, i = 1,2,3,4 (so σ1σ2 = σ4σ3).

Then,
∏

p�=2 Ẑ2
p×sJ2 ≡ D̂σσσ, Ẑ2

p×sJ2 is the unique
C24 p-Nielsen class limit.

Outline. We show D̂σσσ is Ẑ2×sJ2 and σ1σ2 and
σ1σ3 are independent generators of Ẑ2. Then,
σ1 acts on Ẑ2 by multiplication by −1. First:
σ1(σ1σ2)σ1 = σ2σ1 shows σ1 conjugates σ1σ2
to its inverse. Also,

(σ1σ2)(σ1σ3)=(σ1σ3)σ3(σ2σ1)σ3=(σ1σ3)(σ1σ2)

shows the said generators commute. The max-
imal pro-p quotient is Z2

p ×s{±1}.

Show G = U ×sJ2, U a quotient of Z2, gives
nonempty Nielsen classe: Use cofinal family
of U s, (Z/pk+1)2, p �= 2. Two proofs: Elliptic
curves; pure Nielsen class [TVol04,§6.2.2].
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App. B: Nielsen classes for F2 ×sZ/3 (p. 11)

Use H-M reps. (example g-p′ cusps) as exam-
ple of when there are projective systems of
nonempty Nielsen classes [TVol04, Prop. 6.5].

Proposition 5. F̂2,p ×sJ3, p �= 3, is the unique
C±32 p-Nielsen class limit.

Proof. LetG = Gp = (Z/p)2×sJ3: 〈α〉 = J3. As-
sume g1 = (α,vvv1), g2 = (α,vvv2) generate G.
The H-M rep. (g1, g−1

1 , g2, g−1
2 ) is in Ni(G,C±32).

Conjugate in G, so vvv1 = 000. To find such gen-
erators, consider g1g−1

2 = (1,−vvv2) and g2
1g2 =

(1, α−1(v2)). So, g1, g2 generate precisely when
〈−vvv2, α−1(v2)〉 = (Z/p)2. Such a vvv2 exists be-
cause the eigenvalues of α are distinct. So
(Z/p)2 is a cyclic 〈α〉 module.

Now consider Nielsen class with G = U ×s J3
and U having (Z/p)2 as a quotient. There is a
surjective map ψ : G → (Z/p)2 ×sJ3: a Frattini
cover. So, if g′1, g′2 generate (Z/p)2 ×sJ3, then
respective order 3 lifts of g′1, g′2 to g1, g2 ∈ G

automatically generate G.
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App. C: Additions to the Luminy talk

Disappearance of o-p′ cusps (p. 12): At level
0 of the (A5,C34) MT (p = 2), all the cusps
are 2′ cusps (widths are 2, 3,3, 5, 5). At level
1, all o-2′ cusps have disappeared, leaving only
g-2′ cusps (H-M reps.) among the 2′ cusps
[BFr02; §9.1].

Serre’s modular curve p-Frattini property (p. 11):
GQ acts on any projective sequence of points
{pppk ∈ X0(p

k+1)}∞k=0, lying over j′ ∈ Q. This
gives a map GQ → lim∞←k PSL2(Z/pk+1) =
PSL2(Zp). If the induced map to PSL2(Z/p) is
onto, the Frattini property says the image of
GQ is onto PSL2(Zp).

Frattini limits Z/pk+1×sZ/2 and (Z/pk+1)2×s

Z/2 in Serre’s OIT (p. 9): We expect a sim-
pler OIT theorem for the Z/3 case for primes
p where Z/3 acts irreducibly because there is
just one Frattini limit. André’s Theorem is
compatible with that when p = 2.
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www.math.uci.edu/ m̃fried/talkfiles/lum03-12-04.html
links to Talk Source pdf files

[Dur03 ] durhamsh09-30-03.pdf: 25 slides from the Talk
in Durham, Noncommutative aspects of Number
Theory, Aug. 28–Sept. 5, 2003:

[BFr02 ] with P. Bailey, Hurwitz monodromy, spin sepa-
ration and higher levels of a Modular Tower, in
Proceed. of Symposia in Pure Math. 70 (2002)
editors M. Fried and Y. Ihara, 1999 von Neumann
Symposium, August 16-27, 1999 MSRI, 79–221.

[RIMS02 ] Moduli of relatively nilpotent extensions, Insti-
tute of Mathematical Science Analysis 1267, June
2002, Communications in Arithmetic Fundamental
Groups, 70–94.

[FrS03 ] with D. Semmen, Schur multiplier types and Shimura-
like systems of varieties, latest version January 2004.

[TVol04 ] Two genus 0 problems of John Thompson, To
appear in the Cambridge University Press volume
dedicated to John Thompson’s 70th birthday, Con-
ference November, 2002.
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Key inspirational papers behind the talk

[Se68 ] J.-P. Serre, Abelian +-adic representations and
elliptic curves, 1st ed., McGill University Lecture
Notes, Benjamin, New York • Amsterdam, 1968, in
collaboration with Willem Kuyk and John Labute.

[Se90a ] J.-P. Serre, Relêvements dans Ãn, C. R. Acad.
Sci. Paris 311 (1990), 477–482.

[Ser90b ] J.-P. Serre, Revêtements á ramification impaire et
thêta-caractéristiques, C. R. Acad. Sci. Paris 311
(1990), 547–552.

[FV92 ] with H. Völklein, The embedding problem over an
Hilbertian-PAC field, Annals of Math 135 (1992),
469–481.

Our main example alludes to the technique relat-
ing inner and absolute Hurwitz spaces through outer
automophisms of finite groups. This has as a corol-
lary the only known presentation for GQ:

1 → F̃ω → GQ →
∞∏

n=2

Sn → 1.

[IM95 ] Y. Ihara and M. Matsumoto, On Galois actions on
profinite completions of braid groups, Proceedings
AMS-NSF Summer Conference, vol. 186, 1995,
Cont. Math series, Recent Developments in the
Inverse Galois Problem, 173–200.
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Others supporting sources

[An98 ] Y. André, Finitude des couples d’invariants modu-
laires singuliers sur une courbe algébrique plane non
modulaire, Crelle’s J. 505 (1998), 203–208.

[BTh03 ] P. Bailey, Incremental ascent of a Modular Tower
via branch cycle designs, PhD Thesis, UCI Irvine
2003.

[GS78 ] R. Griess and P. Schmid, The Frattini module,
Archiv. Math. 30 (1978), 256266.

[FrJ86 ] M. Fried and M. Jarden, Field arithmetic, Ergeb-
nisse der Mathematik III, vol. 11, Springer Verlag,
Heidelberg, 1986.

[DFr90 ] P. Dèbes and M. Fried, Rigidity and real residue
class fields, Acta Arith. 56 (1990), 13–45.

[FrK97 ] M. Fried and Y. Kopeliovic, Applying Modular
Towers to the inverse Galois problem, Geometric
Galois Actions II Dessins d’Enfants, Mapping Class
Groups . . . , vol. 243, Cambridge U. Press, 1997,
London Math. Soc. Lecture Notes, pp. 172–197.
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