
W 2,1 ESTIMATE FOR SINGULAR SOLUTIONS TO THE
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1. Introduction

Interior W 2,p estimates for the Monge-Ampère equation

detD2u = f in Ω, u|∂Ω = 0

were first obtained by Caffarelli assuming that f has small oscillation depending
on p (see [C2]).

In the case that we only have λ ≤ f ≤ Λ, De Philippis, Figalli and Savin recently
obtained interior W 2,1+ε estimates for some ε depending only on n,Λ and Λ (see
[DF],[DFS]). This result is optimal in light of counterexamples due to Wang ([W])
obtained by seeking solutions with the homogeneity

u(x, y) =
1

λ2+α
u(λx, λ1+αy).

These can be viewed as estimates for strictly convex solutions to the Monge-
Ampère equation. Indeed, at a point x where u is strictly convex we can find a
tangent plane that touches only at x and lift it a little to carve out a set where u
has linear boundary data.

In [M] we show that solutions to λ ≤ detD2u ≤ Λ are strictly convex away from
a singular set of Hausdorff n − 1 dimensional measure zero, and as a consequence
we prove W 2,1 regularity for singular solutions. We also construct for any ε a
singular solution to detD2u = 1 in B1 ⊂ Rn (n ≥ 3) with a singular set of
Hausdorff dimension at least n− 1− ε which is not in W 2,1+ε. However, as ε→ 0
these examples become arbitrarily large. In this paper we give a more precise,
quantitative version of the work done in [M] and improve the examples. Our main
theorem is:

Theorem 1.1. Assume that

λ ≤ detD2u ≤ Λ in B1 ⊂ Rn, ‖u‖L∞(B1) < K.

Then for some ε(n) and C(n, λ,Λ,K) we have ∆u ∈ L logε L and∫
B1/2

∆u (log(1 + ∆u))
ε
dx ≤ C.
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We also construct an example with a singular set of Hausdorff dimension exactly
n − 1 and second derivatives not in L logM L for M large, showing that the main
theorem is in a sense optimal and that we cannot improve our estimate on the
Hausdorff dimension to n − 1 − ε for any ε. Since solutions in two dimensions are
strictly convex, this result is interesting for n ≥ 3.

The paper is organized as follows. In section 2 we present some preliminaries
on the geometry of sections. In section 3 we state our key proposition and use
it to prove Theorem 1.1. In section 4 we prove the key proposition, which is a
quantitative version of work done in [M] obtained by closely examining the geometry
of maximal sections. Finally, in sections 5 and 6 we construct an example with a
singular set of Hausdorff dimension n − 1 and show that it gives optimality of
Theorem 1.1.
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2. Preliminaries

Let u : Ω ⊂ Rn → R be a convex function. Then u has an associated Borel
measure Mu, called the Monge-Ampère measure, defined by

Mu(A) = |∇u(A)|

where |∇u(A)| represents the Lebesgue measure of the image of the subgradients
of u in A (see [Gut]). We say that u solves detD2u = f in the Alexandrov sense if

Mu = f dx.

We define a section of u by

Sh(x) = {y ∈ Ω : u(y) < u(x) +∇u(x) · (y − x) + h}

for some subgradient ∇u(x) at x. Finally, we define Dn,λ,Λ,K to be the collection
of convex functions satisfying

λ ≤ detD2u ≤ Λ in B1 ⊂ Rn, ‖u‖L∞(B1) ≤ K

in the Alexandrov sense and we say that a constant depending only on n, λ,Λ and
K is a universal constant. In this section we recall some geometric observations
about sections of solutions in Dn,λ,Λ,K .

Lemma 2.1. (John’s Lemma). If S ⊂ Rn is a bounded convex set with nonempty
interior, and 0 is the center of mass of S, then there exists an ellipsoid E and a
dimensional constant C(n) such that

E ⊂ S ⊂ C(n)E.

We call E the John ellipsoid of S. There is some linear transformation A such that
A(B1) = E, and we say that A normalizes S.

In the following two lemmas we present an important observation on the vol-
ume growth of sections that are not compactly contained and relate the volume of
compactly contained sections to the Monge-Ampère mass of these sections. Short
proofs can be found in [M].
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Lemma 2.2. Assume that detD2u ≥ λ in Ω ⊂ Rn. Then if Sh(x) is any section
of u, we have

|Sh(x)| ≤ Chn/2

for some constant C depending only on λ and n.

The proof is just a barrier by above in the John ellipsoid for Sh(x).

Lemma 2.3. Let v be any convex function on Ω ⊂ Rn with v|∂Ω = 0. Then

Mv(Ω) |Ω| ≥ c(n)|min
Ω
v|n.

The proof is by comparing to the Monge-Ampère mass of the function whose graph
is the cone generated by the minimum point of v and ∂Ω.

Next, we recall the following geometric observation of Caffarelli for solutions to
the Monge-Ampère equation with bounded right hand side (see [C1]). It says that
compactly contained sections Sh(x) are balanced around x.

Lemma 2.4. Assume that λ ≤ detD2u ≤ Λ in Ω ⊂ Rn. Then there exist
c, C(n, λ,Λ) such that for all Sh(x) ⊂⊂ Ω, there is an ellipsoid E centered at 0
of volume hn/2 with

cE ⊂ Sh(x)− x ⊂ CE.

Finally, we give the following engulfing and covering properties of compactly
contained sections (see [CG] and [DFS]). In the following αSh(x) will denote the α
dilation of Sh(x) around x.

Lemma 2.5. Assume that λ ≤ detD2u ≤ Λ in Ω. Then there exists δ > 0
universal such that:

(1) If Sh(x) ⊂⊂ Ω then

Sδh(x) ⊂ 1

2
Sh(x).

(2) Suppose that for some compact D ⊂ Ω, we can associate to each x ∈ D
some Sh(x) ⊂⊂ Ω. Then we can find a finite subcollection {Shi(xi)}Mi=1

such that Sδhi(xi) are disjoint and

D ⊂ ∪Mi=1Shi(xi).

3. Statement of Key Proposition and Proof of Theorem 1.1

In this section we state the key proposition and use it to prove our main theorem.
In [M] we show that the Monge-Ampere mass of u + 1

2 |x|
2 in small balls around

singular points is large compared to the mass of ∆u. The proposition is a more
precise, quantitative version of this statement for long, thin sections. Let h̄(x) ≥ 0
be the largest h such that Sh(x) ⊂⊂ B1. We say that Sh̄(x)(x) is the maximal

section at x. If h̄(x) = 0 then x is a singular point.

Proposition 3.1. If u ∈ Dn,λ,Λ,K , v = u + 1
2 |x|

2, x ∈ B1/2 and h > h̄(x) then
there exist η(n) and c universal such that for some r with

| log r| > c| log h|1/2,

we have

Mv(Br(x)) > crn−1| log r|η.
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Remark 3.2. Let Σ denote the singular set of u, where h̄ = 0. It follows from
proposition 3.1 and a covering argument that

inf
δ>0

{ ∞∑
i=1

rn−1
i | log ri|η : {Bri(xi)}∞i=1 cover Σ, ri < δ

}
= 0

for some small η(n), giving a quantitative version of the main theorem in [M] for
solutions to λ ≤ detD2u ≤ Λ.

We will give a proof of Proposition 3.1 in the next section by closely examining
the geometric properties of maximal sections.

The idea of the proof of Theorem 1.1 is to apply Proposition 3.1 in the thin
maximal sections, and then apply theW 2,1+ε estimate of [DFS] in the larger sections
to show the following decay of the integral of ∆u over its level sets:

(1)

∫
{∆u>t}

∆u dx ≤ C

| log t|ε
,

for some ε(n). Assuming this is true, theorem 1.1 follows easily by Fubini:∫
B1/2

∆u(log(1 + ∆u))ε/2 dx ≤ C
∫
B1/2

∆u

∫ 1+∆u

1

1

t(log t)1−ε/2 dt dx

≤ C + C

∫ ∞
2

1

t(log t)1−ε/2

∫
{∆u>t}

∆u dx dt

≤ C + C

∫ ∞
2

1

t(log t)1+ε/2
dt

≤ C(ε).

To prove (1), We first recall the following theorem of De Philippis, Figalli and
Savin:

Theorem 3.3. Assume that

λ ≤ detD2u ≤ Λ in SH(0), u|∂SH(0) = 0

and B1 is the John ellipsoid for SH(0). Then there exist C, ε depending only on
λ,Λ and n such that ∫

SH/2(0)∩{∆u>t}
∆u dx < Ct−ε.

We will use the rescaled version of this theorem in the larger maximal sections.

Lemma 3.4. If u ∈ Dn,λ,Λ,K with x ∈ B1/2 and Sh(x) ⊂⊂ B1, then for C universal
and ε(n, λ,Λ) we have∫

Sh/2(x)∩{∆u>t}
∆u dx < Chn/2−1−εt−ε.

Proof. By subtracting a linear function and translating assume that x = 0 and
u|∂Sh(0) = 0. Let

u(x) = (detA)2/nũ(A−1x)

where A normalizes Sh(x) and ũ has height H. Then

D2u(x) = C|Sh(0)|2/n(A−1)D2ũ(A−1x)(A−1)T .
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Applying the estimate on |Sh(0)| from Lemma 2.4 and letting d denote the length
of the smallest axis for the John ellipsoid of Sh(0), it follows that

∆u(x) ≤ C
(
h

d2

)
∆ũ(A−1x).

Using change of variables and Theorem 3.3 we obtain that∫
Sh/2(0)∩{∆u>t}

∆u dx ≤ C(detA)

(
h

d2

)∫
SH/2(0)∩{∆ũ>c d2

h t}
∆ũ(y) dy

≤ C(detA)

(
h

d2

)1+ε

t−ε.

Since detA = hn/2 up to a universal constants and d > ch since u is locally
Lipschitz, the conclusion follows. �

Let Fγ = {x ∈ B1/2 : γ2 ≤ h̄(x) < γ}.

Lemma 3.5. Let u ∈ Dn,λ,Λ,K . Then there is some C universal and ε(n, λ,Λ)
such that ∫

Fγ∩{∆u>t}
∆u dx < Cγ−εt−ε

Proof. By Lemma 2.5 we can take a cover of Fγ by sections {Sh̄i(xi)/2(xi)}
Mγ

i=1 with

xi ∈ Fγ and Sδh̄i(xi)(xi) disjoint for some universal δ. Then∫
Fγ∩{∆u>t}

∆u dx ≤ CMγγ
n/2−1−εt−ε

by Lemma 3.4. We need to estimate the number of sections Mγ in our Vitali cover
of Fγ .

Take x ∈ Fγ and consider Sh̄(x)(x), which touches ∂B1. By translation and

subtracting a linear function assume that x = 0 and u|∂Sδ2h̄(0)(0) = 0. By rotating

and applying Lemma 2.4 assume that Sδ2h̄(0)(0) contains the line segment from
−cen to cen, with c universal.

Let wt be the restriction of u to {xn = t} and let

Swt = Sδ2h̄(0)(0) ∩ {xn = t}

be the slice of Sδ2h̄(0)(0) at xn = t. Since |Sδ2h̄(0)(0)| ≤ Cγn/2 and this section has
length 2c in the en direction, it follows from convexity that

|Swt |Hn−1 ≤ Cγn/2.
By convexity, u(ten) < −δ2h̄(0)/2 for −c/2 ≤ t ≤ c/2. Applying Lemma 2.3, we
conclude that for t ∈ [−c/2, c/2],

Mwt(S
wt) > cγn/2−1.

Let r be the distance between ∂Sδ2h̄(0)(0) and ∂(2Sδ2h̄(0)(0)). Divide 2Sδ2h̄(0)(0)
into the slices

Sk = 2Sδ2h̄(0)(0) ∩ {kr < xn < (k + 1)r}
for k = − c

2r to c
2r . Let v = u + 1

2 |x|
2. Then ∇v(Sk) contains a ball of radius r/2

around each point in ∇v(Sw(k+1/2)r ) (see Figure 1), so

Mv(Sk) ≥ crMv(Sw(k+1/2)r ) ≥ crγn/2−1.
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S k

S k
w

( k+1/ 2) r

∇ v (S k
w

( k+1/2 )r )

∇ v

S
δ 2 h̄ (0 )

2S
δ2 h̄ (0)

B r /2( y )

∇ v (B r /2( y ))

Figure 1. ∇v(Sk) contains an r/2-neighborhood of the surface
∇v(Sw(k+1/2)r ), which projects in the xn direction to a set of Hn−1

measure at least cγn/2−1.

Summing from k = − c
2r to c

2r we obtain that

|∇v(2Sδ2h̄(0)(0))| ≥ cγn/2−1.

Using that 2Sδ2h̄i(xi) ⊂ Sδh̄i(xi) are disjoint and summing over i we obtain that

Mγγ
n/2−1 < C

and the conclusion follows.
�

Proof of Theorem 1.1. We first consider the set where h̄(x) ≤ 1
t1/2 . At any point

in this set, by Proposition 3.1, we can find some r > 0 such that | log r| > c| log t|1/2
and

Mv(Br(x)) > crn−1(log t)η/2.

We conclude that∫
Br(x)

∆u dx ≤ Crn−1 ≤ C

(log t)η/2
Mv(Br(x)).

Covering {∆u > t}∩{h̄(x) ≤ 1
t1/2 } with these balls and taking a Vitali subcover

{Bri(xi)}, we obtain that∫
{∆u>t}∩{h̄(x)< 1

t1/2
}

∆u dx ≤ C

(log t)η/2

∑
i

Mv(Bri(xi)) ≤
C

(log t)η/2
,

giving the desired bound over the “near-singular” points.
We now study the integral of ∆u over the remaining subset of {∆u > t}. Take

k0 so that

2k0−1 ≤ t1/2 < 2k0 .
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Applying Lemma 3.5 we obtain that∫
{∆u>t}∩{h̄(x)> 1

t1/2
}

∆u dx ≤
k0∑
i=0

∫
{∆u>t}∩F2−i

∆u dx

≤ Ct−ε
k0∑
i=1

2εi

≤ Ct−ε/2,

giving the desired bound. �

4. Quantitative Behavior of Maximal Sections

In this section we closely examine the geometric properties of maximal sections
of solutions in Dn,λ,Λ,K to prove Proposition 3.1.

Let u ∈ Dn,λ,Λ,K and fix x ∈ B1/2. Then for any h > h̄(x), Sh(x) is not

compactly contained in ∂B1. If h̄(x) > 0, then by Lemma 2.4, Sh̄(x)(x) contains an
ellipsoid E centered at x with a long axis of universal length 2c.

If h̄(x) = 0 and L is the tangent to u at x then it is a consequence of lemma 2.4
(see [C1]) that {u = L} has no extremal points, and in particular for any h > 0 we
know Sh(x) contains a line segment (independent of h) exiting ∂B1 at both ends.

By translating and subtracting a linear function assume that x = 0 and ∇u(0) =
0. By rotating assume that Sh(0) contains the line segment from −cen to cen for
all h > h̄(0). For the rest of the section denote h̄(0) by just h̄.

Let w be the restriction of u to {xn = 0} with sections Swh . Since |Sh(0)| < Chn/2

for all h and Sh̄(0) contains a line segment of universal length in the en direction,
we have

|Swh (0)|Hn−1 < Chn/2

for h ≥ h̄. In the following analysis we need to focus on those sections of w with
the same volume bound. The following property is sufficient:

Property F : We say Swh (y) satisfies property F if

w(y) +∇w(y) · (−y) + h ≥ h̄.

(See Figure 2).

Lemma 4.1. If Swh (y) satisfies property F then

|Swh (y)| < Chn/2.

Proof. The plane u(y) + ∇u(y) · (z − y) + h is greater than h̄ along z = ten for
either t > 0 or t < 0. Since u < h̄ on the segment from −cen to cen, it follows that
Sh(y) contains the line segment from 0 to cen or −cen. Since |Sh(y)| < Chn/2 the
conclusion follows. �

The first key lemma says that w grows logarithmically faster than quadratic in
at least two directions at a level comparable to h̄. Let

dy1(h) ≥ dy2(h) ≥ ... ≥ dyn−1(h)

denote the axis lengths of the John ellisoid for Swh (y).
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h̄ h

y

w

0
.

Figure 2. Swh (y) satisfies property F if the tangent plane at y,
lifted by h, lies above h̄ at 0.

Lemma 4.2. For any h > h̄ there exist ε(n), C0 universal, h0 < e−| log h|1/2

and y
such that Swh0

(y) satisfies property F and

dyn−2(h0) < C0h
1/2
0 | log h0|−ε.

The next lemma says that if w grows logarithmically faster than quadratic in
at least two directions up to height h then the Monge-Ampère mass of u + 1

2 |x|
2

is logarithmically larger than the mass of ∆u in a ball with radius comparable to
h1/2.

Lemma 4.3. Fix ε > 0 and assume that for some h > 0, Swh (y) satisfies property
F . Then there exist η1, η2(n, ε) and C depending on universal constants and ε such
that if

dyn−2(h) < h1/2| log h|−ε

then for some r < Ch1/2| log h|−η1 we have

M

(
u+

1

2
|x|2
)

(Br(0)) > C−1rn−1| log r|η2 .

These lemmas combine to give the key proposition:

Proof of Proposision 3.1: By Lemma 4.2, there is some Sh(y) satisfying prop-
erty F with

dyn−2(h) < C0h
1/2| log h|−ε,

with ε(n), C0 universal and h < e−| log(δ+h̄(x))|1/2

for any δ. The conclusion follows
from Lemma 4.3. �

We now turn to the proofs of Lemmas 4.2 and 4.3.
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x1

x2

b (h /2)

P1

P2

S h
w (0)

S h/2
w (0) 0.

Figure 3

Proof of Lemma 4.2. Assume by way of contradiction that for all h < h0 and
Swh (y) satisfying property F we have

dyn−2(h) > C0h
1/2| log h|−ε,

for h0 depending on h̄ and C0, ε we will choose later. We divide the proof into two
steps.

Step 1: Define the breadth b(h) as the minimum distance between two parallel
tangent hyperplanes to ∂Swh (0). We show that for h̄| log h̄| < h < h0 we have

b(h/2) >

(
1

2
+

C1

| log h|

)
b(h)

for some C1 large depending on C0. Let x0 be the center of mass of Swh (0) and
rotate so that the John ellipsoid for Swh (0) is A(B1) + x0, where

A = diag(d0
1(h), ..., d0

n−1(h)).

Let P1, P2 be the tangent hyperplanes to ∂Swh/2(0) a distance b(h/2) apart. Let

x1, x2 be points where P1 and P2 become tangent to ∂Swh (0) when we slide them
out. Assume that the distance between 0 and the plane tangent at x1 is larger than
that between 0 and the plane tangent at x2. (See Figure 3).

Let x̃1 be the image of x1 under A−1 and let

w̃(x) = (detA)−2/nw(Ax).

Observe that w̃ is the restriction of ũ(x) = (detA)−2/nu(Ax′, xn) which solves
λ ≤ detD2u ≤ Λ, so that sections Sw̃h of w̃ satisfying property F with h̄ replaced

by (detA)−2/nh̄ have volume bounded above by Chn/2. Furthermore, since the
distance between 0 and the plane tangent at x1 was larger and the images of the
tangent planes under A−1 are separated by distance at least 2, we have |x̃1| ≥ 1.
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w̃

x̃1

h̃

ỹ
(det A)−2 /n h̄

H

. ..
0

Figure 4. Lifting the tangent plane at ỹ by h∗ = h̃+det(A)−2/nh̄
we obtain a section of w̃ satisfying property F .

By convexity we can find ỹ on the line segment connecting 0 to x̃1 such that

∇w̃(ỹ) · x̃1

|x̃1|
=

H

|x̃1|
,

where H = detA−2/nh is the height of w̃. Let h̃ be the smallest t such that
0 ∈ Sw̃t (ỹ). We aim to bound h̃ below, which heuristically rules out cone-like
behavior in the x̃1 direction. Let

h∗ = h̃+ (detA)−2/nh̄.

We have chosen h∗ so that Sw̃h∗(ỹ) and Swδ (y) = A(Sw̃h∗(ỹ)) satisfy property F , where

δ = (detA)2/nh∗. (See Figure 4). It follows that

|Sw̃h∗(ỹ)| < C(h∗)n/2.

We now bound the volume of Sw̃h∗(ỹ) by below. Since 0, x̃1 are in this section,
it has diameter at least 1. Since w̃ has height H it has interior Lipschitz constant
C
H , so the smallest axis of the John ellipsoid for Sw̃h∗(ỹ) has length at least ch

∗

H . We
turn to the remaining axes.

Let Ey be the John ellipsoid for Swδ (y). By contradiction hypothesis for any
n − 2 dimensional plane P passing through the center of Ey, we can find a n − 3
dimensional plane P ′ contained in P such that P ′ ∩ Ey is an n − 3 dimensional
ellipsoid with axes dy1,P ′ ≥ ... ≥ d

y
n−3,P ′ satisfying

dyn−3,P ′ > C0δ
1/2| log δ|−ε.

Take P such that A−1(P ) is perpendicular to the segment connecting 0 and x̃1. By
using the hypothesis and that w is locally Lipschitz we have

d0
n−2(h)d0

n−1(h) > cC0h
3/2| log h|−ε.
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Since
d0

1(h)...d0
n−1(h) < Ch

n
2 ,

this gives

d0
1(h)...d0

n−3(h) <
C

C0
h
n−3

2 | log h|ε.

It follows that A−1 changes the n− 3 dimensional volume of P ′ ∩Ey by a factor of
at least

c(n)

d0
1(h)...d0

n−3(h)
≥ cC0h

−n−3
2 | log h|−ε.

Since
detA > chn/2| log h|−C(n)ε

(by the contradiction hypothesis) and δ = (detA)2/nh∗ we conclude that

|Sw̃h∗(ỹ) ∩A−1(P ′)|Hn−3 > C1
(δ1/2| log δ|−ε)n−3

d0
1(h)...d0

n−3(h)

≥ C1(h∗)
n−3

2 (detA)
n−3
n h−

n−3
2 (C| log h|+ | log h∗|)−C(n)ε

for some large C1 depending on C0. We also have

H = h(detA)−2/n ≤ | log h|C(n)ε.

Using that the remaining axes have lengths at least 1 and ch
∗

H we obtain

|Sw̃h∗(ỹ)| > C1(h∗)
n−1

2 | log h|−C(n)ε(C| log h|+ | log h∗|)−C(n)ε.

Using that |Sw̃h∗(ỹ)| < C(h∗)n/2 we get a lower bound on h∗:

h∗ > C1| log h|−C(n)ε.

(See Figure 5 for the simple case n = 3.)
Recalling the definition of h∗ and using again the lower bound on detA it follows

that

h̃+ C
h̄

h
| log h|C(n)ε > C1| log h|−C(n)ε.

Taking ε to be small enough that C(n)ε = 1/2 and using that h̄| log h̄| < h we get

h̃ > C1| log h|−1/2.

Finally, let
(

1
2 + γ

)
x̃1 be the point where w̃ = H

2 . It is clear from convexity (see
Figure 6) that

2γH ≥ h̃.
Recalling that H < c| log h|C(n)ε < c| log h|1/2, we obtain

γ ≥ C1| log h|−1.

Let l1, l2 be the distances from 0 to the translations of P1 and P2 which are
tangent to ∂Swh (0) so that b(h) ≤ l1 + l2. The previous analysis implies that P1 and
P2 have distance at least

(
1
2 + γ

)
l1 and 1

2 l2 from 0. Since l1 ≥ l2 it follows that

b(h/2) ≥
(

1

2
+ γ

)
l1 +

1

2
l2 ≥

(
1 + γ

2

)
(l1 + l2).

Since γ ≥ C1

| log h| , step 1 is finished.

Step 2: We iterate step 1 to prove the lemma. First assume that h̄ > 0 and
that h̄| log h̄| = 2−k and h0 = 2−k0 . Note that d0

n−1(h) > c(n)b(h) and that
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S
h*
w̃ ( ỹ)

> ch*/Hx̃1

> 1

0 ..

Figure 5. For the case n = 3, the above figure implies that
|Sw̃h∗(ỹ)| > ch∗/H. This, combined with the volume estimate

|Sw̃h∗(ỹ)| < C(h∗)3/2 and the upper bound on H from the con-
tradiction hypothesis give a lower bound of c| log h|−Cε for h∗.

γ | x̃1 |

2 γ | x̃1 |

w̃

H

H / 2

x̃1

Figure 6. By convexity 2γ is at least h̃/H, giving a quantitative
modulus of continuity for ∇w near 0 which we exploit in Step 2 to
obtain a contradiction.
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d0
n−1(h0) > c2−k0 since u is locally Lipschitz. Iterating step 1 for C1 large we

obtain

d0
n−1(2−k) ≥ c(1/2 + C1/k)(1/2 + C1/(k − 1))...(1/2 + C1/k0)2−k0

≥ c2−k exp(C1

k∑
i=k0

1

i
)

≥ 2−k
k

k0
,

showing that
d0
n−1(h̄| log h̄|) ≥ ch̄| log h̄|

(
| log h̄|| log h0|−1

)
.

Finally, take | log h0| = | log h̄|1/2. We conclude using convexity that

d0
n−1(h̄) > | log h̄|−1d(h̄| log h̄|) > ch̄| log h̄|1/2.

Since
d0

1(h̄)...d0
n−1(h̄) < Ch̄n/2

we thus have
d0
n−2(h̄) < Ch̄1/2| log h̄|−ε(n),

giving the desired contradiction.
In the case that h̄ = 0, we may run the above iteration for any h > 0 starting at

height h0 = e−| log h|1/2

to obtain the contradiction. �

Proof of Lemma 4.3. First assume that dy1(h) < h1/2| log h|−α1 for some α1.

Since |Swh (y)| < Chn/2, Lemma 2.3 gives

Mw(Swh (y)) > ch
n−2

2 .

Take C(n) large enough that for r = C(n)h1/2| log h|−α1 ,

Swh (y) ⊂ Br/2(0).

Clearly,

M

(
1

2
|x|2 + w

)
(Swh (y)) > Mw(Swh (y)).

Furthermore, ∇
(
u+ 1

2 |x|
2
)

(Br(0)) contains a ball of radius r/2 around every point

in ∇
(
u+ 1

2 |x|
2
)

(Swh (y)) (see Figure 7). We conclude that

M

(
u+

1

2
|x|2
)

(Br(0)) > crMw(Swh (y))

≥ crh
n−2

2

≥ crn−1| log h|(n−2)α1

≥ crn−1| log r|(n−2)α1 .

We proceed inductively. Assume that dyi (h) > h1/2| log h|−αi for i = 1, ..., k − 1
and that

dyk(h) < h1/2| log h|−αk

for some α1, ..., αk to be chosen shortly. We aim to apply Lemma 2.3 to slices of the
section Swh (y) at 0, but we need the height of the plane w(y)+∇w(y)·(x−y)+h at 0

to be at least h. We thus consider Sw2h(y) instead. Note that dyi (2h) > h1/2| log h|−αi
for i ≤ k − 1 and by convexity dyk(2h) < 2h1/2| log h|−αk .
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B r /2( x)

S h
w ( y)

∇(u+| x |2/ 2)

∇(u+| x |2/ 2)(S h
w ( y))

∇(u+| x |2/ 2)(B r /2(x ))

B r(0) ,  r 2 <<h

Figure 7. ∇(u+ |x|2/2)(Br(0)) contains an r/2-neighborhood of
the surface∇(u+|x|2/2)(Swh (y)), which projects in the xn direction

to a set of Hn−1 measure at least crn−2| log r|(n−2)α1 .

Rotate so that the axes align with those for the John ellipsoid of Sw2h(y). Take
the restriction of w to the subspace spanned by ek, ..., en−1, and call this restriction
wk. Let

Swk = Sw2h(y) ∩ {x1 = ... = xk−1 = 0},
the slice of the section Sw2h(y) in this subspace. Then since

dy1(2h)...dyn−1(2h) ≤ Chn2 ,

by hypothesis we have

|Swk |Hn−k ≤ Ch
n+1−k

2 | log h|α1+...+αk−1 .

Since Swh (y) contains 0 and Swk is the slice of Sw2h(y), we know that wk has height
at least h in Swk . Using this and Lemma 2.3,

Mwk(Swk) ≥ ch
n−k−1

2 | log h|−(α1+...+αk−1).

Finally, take C(n) large enough that for r = C(n)h1/2| log h|−αk we have

Swk ⊂ Br/2(0).

By strict quadratic growth, ∇
(
u+ 1

2 |x|
2
)

(Br(0)) contains a ball of radius r/2

around every point in ∇(u+ 1
2 |x|

2)(Swk). It follows that

M

(
u+

1

2
|x|2
)

(Br(0)) ≥ cMwk(Swk)rk

≥ ch
n−k−1

2 | log h|−(α1+...+αk−1)rk

≥ crn−1| log r|(n−k−1)αk−(α1+...+αk−1).
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Choose βi so that (n − k − 1)βk − (β1 + ... + βk−1) = 1 and let αi = cβi, with c
chosen so that αn−2 = ε. If dy1(h) < h1/2| log h|−α1 , we are done by the first step,
so assume not. Then apply the inductive step for i = 2, ..., n − 2 to conclude the
proof. �

5. Example

In this section we construct a solution to detD2u = 1 in R3 such that Σ has
Hausdorff dimension exactly 2. A small modification gives the analagous example
in Rn with a singular set of Hausdorff dimension n−1. This shows that the estimate
on the Hausdorff dimension of the singular set in [M] cannot be improved to n−1−δ
for any δ.

We proceed in several steps:

(1) The key step is to construct a subsolution w in R3 satisfying detD2w ≥ 1
that degenerates along {x1 = x2 = 0} and grows logarithmically faster than
quadratic in the x1 direction, in particular like x2

1| log x1|4.
(2) Next, we construct S ⊂ [−1, 1] of Hausdorff dimension 1 and a convex

function v on [−1, 1] such that v separates from its tangent line faster than
r2| log r|4 at each point in S.

(3) Finally, we obtain our example by solving the Dirichlet problem

detD2u = 1 in Ω = {|x′| < 1} × (−1, 1), u|∂Ω = C(v(x1) + |x2|)

and comparing with w at points in S × {0} × {±1}.
In the following analysis c, C will denote small and large constants respectively.

Construction of w: We first seek a function with just faster than quadratic
growth in one direction and sections Sh(0) with volume smaller than h3/2. To that
end, let

g(x1, x2) = x2
1| log x1|α +

|x2|
| log x2|β

for some α, β to be chosen shortly. It is tempting to guess w = g(x1, x2)(1 + x2
3).

However, the dominant terms in the determinant of the Hessian near the x2 axis
are

| log x1|α

| log x2|2β

(
1

| log g|
− x2

3

)
,

where the first comes from the diagonal entries and the second from the mixed
derivatives. Thus, this function is not convex. This motivates the following modi-
fication:

w(x′, x3) = g(x′)

(
1 +

x2
3

| log g(x′)|

)
.

It is straightforward to check that the leading terms in the determinant of the
Hessian (taking x3 small) are

x2
1| log x1|2α

|x2(log x2)β+1 log g|
+

| log x1|α

|(log x2)1+2β log g|
,

since now the mixed derivative terms have the same homogeneity in log(g) as the
diagonal terms. For |x′| small, the first term is large in {|x2| < |x1|3}, and by
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taking α = 2 + 2β the second term is bounded below by a positive constant in
{|x2| ≥ |x1|3}. Thus, up to rescaling and multiplying by a constant we have

detD2w ≥ 1

in Ω = {|x′| < 1} × (−1, 1). For convenience, we take β = 1 and α = 4 for the rest
of the example.

Construction of S: Start with the interval [−1/2, 1/2]. For the first step
remove an open interval of length 5

6 from the center. At the kth step, remove

intervals a fraction 5
k+5 of the length of the remaining 2k intervals from their centers.

Denote the centers of the removed intervals by {xi,k}2
k

i=1, and the intervals by Ii,k.
Finally, let

S = [−1, 1]− ∪i,kIi,k.
Let lk = |Ii,k|. It is easy to check

lk =
10

k + 5
2−k

(
1− 5

k + 4

)
...

(
1− 5

6

)
≤ C

k6
2−k.

One checks similarly that the length of the remaining intervals after the kth step
is at least

2−kk−15.

It follows that

(2) inf

{ ∞∑
i=1

ri| log(ri)|15 : {Bri(xi)} cover S, ri < δ

}
> c

for all δ > 0. In particular, the Hausdorff dimension of S is exactly 1.

Construction of v: Let

f(x) =

{
|x| |x| ≤ 1
2|x| − 1 |x| > 1

We add rescalings of f together to produce the desired function:

v(x) =

∞∑
k=1

k4l2kf(l−1
k (x− xi,k)).

We now check that v satisfies the desired properties:

(1) v is convex, as the sum of convex functions. Furthermore, using that lk <
C2−kk−6 we have

|v(x)| ≤ C
∞∑
k=1

2k∑
i=1

k4lk

≤ C
∞∑
k=1

k−2

≤ C

so v is bounded.
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(2) Let x ∈ S. We aim to show that v separates from a tangent line more than
r2| log(r)|4 a distance r from x. By subtracting a line assume that v(x) = 0
and that 0 is a subgradient at x. Assume further that x+ r < 1/2 and that
lk < r ≤ lk−1. There are two cases to examine:

Case 1: There is some y ∈ (x+r/2, x+r)∩S. Then by the construction
of S it is easy to see that there is some interval Ii,k such that Ii,k ⊂ (x, x+r).
On this interval, v grows by

k4l2k ≥ cl2k| log(lk)|4 ≥ cr2| log(r)|4.

Case 2: Otherwise, there is an interval Ii,j of length exceeding r/2 such
that (x + r/2, x + r) ⊂ Ii,j . Then at the left point of Ii,j , the slope of v
jumps by at least k4lk. It follows that at x+ r, v is at least

crk4lk ≥ cr2| log(r)|4.

Thus, v has the desired properties.

Construction of u: We recall the following lemma on the solvability of the
Monge-Ampère equation (see [Gut]).

Lemma 5.1. If Ω is open and convex, µ is a finite Borel measure and ϕ is con-
tinuous on ∂Ω then there exists a unique convex solution u ∈ C(Ω̄) to the Dirichlet
problem

detD2u = µ, u|∂Ω = ϕ.

Let ϕ(x1, x2, x3) = C(v(x1) + |x2|) for a constant C we will choose shortly, and
obtain u by solving the Dirichlet problem

detD2u = 1 in Ω = {|x′| < 1} × [−1, 1], u|∂Ω = ϕ.

Take x ∈ S ×{0}× {±1}. By translating and subtracting a linear function assume
that x1 = 0 and 0 is a subgradient for ϕ at x. Taking C large we guarantee that

ϕ(x1, x2,±1) > C(x2
1| log(x1)|4 + |x2|) > w(x1, x2,±1)

for all x1, x2, and that that ϕ > w on the sides of Ω. Thus, u ≥ w in all of Ω. Since
u = 0 at both (0, 0,±1) and w(0, 0, x3) = 0 for all |x3| < 1, we have by convexity
that u = 0 along (0, 0, x3).

This shows that for these examples

Σ ⊂ S × {0} × (−1, 1),

which has Hausdorff dimension exactly 2.

Remark 5.2. To get the analagous example in Rn, take

u(x1, x2, x3) + x2
4 + ...+ x2

n.
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6. Optimality of Theorem 1.1

In [M] we construct for any ε solutions to detD2u = 1 in Rn that are not in
W 2,1+ε, but as ε → 0 these examples blow up. In this section we aim to improve
this by showing that the example in the previous section is not in W 2,1+ε for any
ε, and in fact the second derivatives are not in L logM L for M large.

Let φ(x) = (1+x)(log(1+x))M for some M large. Then φ is convex for x ≥ 0, so
for any nonnegative integrable function f and ball Br we have by Jensen’s inequality
that ∫

Br

φ(rnf(x)) dx ≥ crnφ
(∫

Br

f(x) dx

)
.

Taking f(x) = r−n∆u(x) we obtain∫
Br

(1 + ∆u)(log(1 + ∆u))M dx ≥ c
(∫

Br

∆u dx

)(
log

(
r−n

∫
Br

∆u dx

))M
.

Recall that at points x ∈ S×{0}×(−1, 1)n−2 the subsolutions w touch u by below,
and that w grows like |x2|| log x2|−1 at x. It follows that

sup
∂Br(x)

(u− u(x)) ≥ cr| log r|−1.

Applying convexity we conclude that∫
Br(x)

(1 + ∆u) (log(1 + ∆u))
M
dx ≥ c

(∫
∂Br(x)

uν

)(
log

(
r−n

∫
∂Br(x)

uν

))M
≥ crn−1| log r|−1

(
log(cr−1| log(r)|−1)

)M
≥ crn−1| log r|M−1.

Cover Σ∩B1/2 with balls of radius less than δ and take a Vitali subcover {Bri}Ni=1.
We then have∫

B1/2

(1 + ∆u) (log(1 + ∆u))
M
dx ≥ c

N∑
i=1

rn−1
i | log ri|M−1,

and for M large the right side goes to ∞ as δ → 0 by equation 2.
Thus, the second derivatives of u are not in L logM L for M large, and in par-

ticular u is not in W 2,1+ε for any ε.
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