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Abstract. In order to diagnose the cause of some defects in the category

of canonical hypergroups, we investigate several categories of hyperstructures
that generalize hypergroups. By allowing hyperoperations with possibly empty

products, one obtains categories with desirable features such as completeness

and cocompleteness, free functors, regularity, and closed monoidal structures.
We show by counterexamples that such constructions cannot be carried out

within the category of canonical hypergroups. This suggests that (commuta-

tive) unital, reversible hypermagmas—which we call mosaics—form a worth-
while generalization of (canonical) hypergroups from the categorical perspec-

tive. Notably, mosaics contain pointed simple matroids as a subcategory, and

projective geometries as a full subcategory.
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1. Introduction

Hypergroups [Mar34] are a generalization of groups that allow for the product
of two elements to be a (nonempty) set of elements, while hyperrings and hyper-
fields [Kra57, §3] are ring-like objects whose additive structure is a particular kind
of hypergroup. While these structures were defined several decades ago, they have
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Figure 1. Categories of hyperstructures. A “⊆” denotes a full
subcategory, while the “↪→” is a faithful forgetful functor.

recently seen a flurry of renewed activity as they have been integrated into several
different mathematical topics, including:

• tropical geometry [Vir10,Jun21,Lor22],
• number theory and the field with one element [CC10,CC11],
• algebraic geometry [Jun16,Jun18], and
• matroid theory [BB18,BL21].

(Several classical examples of hypergroups arising from group theory are also re-
called in Subsection 2.2 below.) These developments suggest that many future
applications of the methods of hyperstructures are waiting to be revealed.

In the spirit of aiding such cross-disciplinary relationships and spurring new
ones, the goal of this paper is to analyze hypergroups and related structures within
a categorical context, which we hope will allow for a clearer study and application
of these objects across mathematical contexts. A handful of papers have been de-
voted to various categories of hypermodules, such as [Mad06,Mou20,JST22,TR23],
whose underlying additive structure forms a canonical hypergroup. In the case of
(ordinary) modules over a ring R, many desirable properties of the category R-Mod
follow from those of the category Ab of abelian groups, perhaps most notably the
property of being an abelian category. Thus we began this project with the goal of
understanding the category of canonical hypergroups.

In our own investigations of the categories of (canonical) hypergroups, we were
surprised to find that certain desirable properties do not hold for these categories,
but do hold for categories of more general hyperstructures. At the heart of this
misbehavior of hypergroups seems to be the assumption that the product of any
two elements returns a nonempty set. While it is not initially obvious, this is in fact
a consequence (assuming the other axioms) of the requirement that the product be
associative (Lemma 2.6).

For this reason we study categories of sets equipped with hyperoperations—called
hypermagmas—without any restriction on the subset returned by a hyperoperation.
This is in line with the treatment of hypermagmas in [Dud16]. We call the objects
that generalize hypergroups in this setting by the name of mosaics. They are
assumed to have an identity, unique inverses, and reversibility, but no associativity
and with possibly empty products. Then commutative mosaics can be viewed as a
nonassociative generalization of canonical hypergroups. We denote these categories
as follows:

• HMag, uHMag, and HMon are the categories of (unital) hypermagmas and
hypermonoids;

• Msc and cMsc are the categories of mosaics and commutative mosaics;
• HGrp and Can are the categories of hypergroups and canonical hypergroups;
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while Mon, Grp, and Ab denote the ususal categories of monoids and (abelian)
groups. See Figure 1 for the relationships between these various categories.

We now survey some of the results proved below. Among the first categorical
properties one would naturally ask about are certainly completeness and cocom-
pleteness. The categories of (unital) hypermagmas and mosaics behave well in this
respect, while the categoroes of hypergroups and canonical hypergroups fail to be
either complete or cocomplete.

Theorem 1.1. The categories HMag, uHMag, Msc, and cMsc are complete and
cocomplete, and free objects exist in these categories.

The categories HGrp and Can have small products and coequazliers. However,
there are binary coproducts and equalizers that do not exist in HGrp or Can.

Proof. This combines Propositions 3.1 and 3.3 and Theorem 3.11 of subsection 3.1;
Theorems 4.1 and 4.3 of subsection 4.1; and Propositions 4.20 and 4.21 of subsec-
tion 4.2. □

A more subtle aspect of these categories is the nature of various epimorphisms
and monomorphisms. In contrast to the categories of (abelian) groups, there are
various types of epimorphisms and monomorphisms that do not coincide in these
categories. Recall that in any category, a regular epimorphism (resp., monomor-
phism) is defined to be a coequalizer (resp., equalizer) of a pair of morphisms.
Furthermore, in any category with a zero object, a normal epimorphism (resp.
monomorphism) is defined to be a cokernel (resp., kernel) of a morphism. We
characterize these morphisms as follows.

Theorem 1.2. In each of the categories HMag, uHMag, Msc, and cMsc:

• The epimorphisms (resp., monomorphisms) are the surjective (resp., injec-
tive) morphisms;

• The regular epimorphisms (resp., monomorphisms) can be characterized as
the short (resp., coshort) morphisms (Definition 2.9).

Each of these four categories is regular. Furthermore, in the categories uHMag,
Msc, and cMsc, the normal monomorphisms correspond to strict absorptive sub-
hypermagmas (Definitions 2.7 and 3.8), and normal epimorphisms correspond to
unitizations (Definition 3.7).

Proof. See subsection 3.2 and Corollary 4.2. □

The relationships between these morphisms is visualized in Figures 2 and 3.

One other crucial aspect of the theory of abelian groups is the formation of tensor
products and hom-groups, along with the tensor-hom adjunction. In category-
theoretic terms, the structure (Ab,⊗Z,Z) forms a closed monoidal category. In
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Figure 2. Characterizations of various monomorphisms.
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Figure 3. Characterizations of various epimorphisms.

this paper we are able to define a closed monoidal structure (cMsc,⊠,F) on the
category of commutative mosaics, which can be viewed as a replacement for the
tensor product of abelian groups. Somewhat surprisingly, it turns out that the
categories of hypermagmas and unital hypermagmas also have closed monoidal
structures! These monoidal products are constructed by a sequence of successive
quotient objects

M �N ↠M ∧ N ↠M ⊠N.

The internal hom for each of these categories is defined in a natural way by endowing
the ordinary hom set Hom(M,N) with a hyperoperation of the form

f ⋆ g = {h ∈ Hom(M,N) | h(x) ∈ f(x) ⋆ g(x) for all x ∈M}. (1.3)

In addition, we provide explicit counterexamples to show that one cannot hope to
provide a similar “tensor product” for canonical hypergroups.

Theorem 1.4. Each of the categories HMag, uHMag, and cMsc has a closed
monoidal structure such that:

• the monoidal product represents the functor of bimorphisms [Jag99] on the
category;

• the monoidal unit is the free object generated by one element;
• the internal hom is given by endowing the ordinary hom set with the natural
hyperoperation (1.3).

However, there exists a canonical hypergroup H such that Can(Z/2Z, H) does
not form a hypergroup under the natural hyperoperation (1.3). Furthermore, for
the Klein four-group V , the functor of bimorphisms BimCan(V, V ;−) is not repre-
sentable on Can.

Proof. See subsection 3.3 along with Theorems 4.11, 4.23, and 4.24. □

The classical tensor-hom adjunction become particularly useful when viewing
abelian groups as the underlying additive structure of rings. For instance, the
structure of a ring R can alternatively be encoded in terms of a monoid object in
Ab. We show that the closed monoidal structure on cMsc allows us to do something
similar for multirings (including hyperrings).

Theorem 1.5 (Theorem 4.16). The categories of multirings and hyperrings have
fully faithful embeddings into the category of monoid objects of cMsc.

The above suggests that monoid objects in cMsc are an interesting and poten-
tially useful generalization of multirings and hyperrings, whose theory we hope to
develop in the future.

Finally, we wish to show that there is a rich supply of commutative mosaics aside
from canonical hypergroups. This is accomplished via a functor from pointed simple
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matroids to commutative mosaics. The construction is inspired by a similar hyper-
operation defined on irreducible projective geometries, as in [CC11, Section 3]. In
fact, this functor allows us to extend this operation to projective geometries [FF00]
that are not necessarily irreducible.

Theorem 1.6 (Theorems 4.26 and 4.30). There is a faithful functor sMat• → cMsc
from the category of simple pointed matroids to the category of commutative mo-
saics. This functor induces a fully faithful embedding from the category of projective
geometries to the category of commutative mosaics.

In light of the above results, it seems reasonable to consider commutative mo-
saics as a “convenient category of canonical hypergroups,” borrowing well known
terminology from [Ste67]. Our hope is that this framework will provide a flexible
context in which to study representations of hyperrings, multirings, and related
structures; we hope to return to this topic in the near future.

The results above suggest an intriguing question. The category of mosaics gains
its advantages by omission of the associative axiom in the objects. Is there a useful
subcategory of “weakly associative” objects in Msc (or cMsc) that retains good
categorical properties while keeping some measure of algebraic constraint on the
structures?

Acknowledgments. We wish to thank Matt Satriano for a number of stim-
ulating discussions that led to the present work. We also thank Zoë Reyes for
suggesting the term mosaic.

2. A brief overview of hyperstructures

Let M be a set, and let P(M) denote its power set. A hyperoperation on M is
a function

⋆ : M ×M → P(M).

A hyperoperation extends to a binary operation on the power set

⋆ : P(M)× P(M) → P(M)

in the obvious way: given X,Y ⊆M we set

X ⋆ Y =
⋃

(x,y)∈X×Y

x ⋆ y.

Notice that by this definition, for all X ⊆M we have

X ⋆∅ = ∅ = ∅ ⋆ X. (2.1)

In case x ⋆ y = {z} is a singleton, it is customary to instead write the shorthand
equation x⋆y = z. We also extend this shorthand to operations on subsets Y ⊆M ,
by setting x⋆Y = {x}⋆Y . In general, we will often use an element interchangeably
with the singleton containing that element throughout this paper.

The following terminology is inspired by [Mit72, Définition 1.2] and [Dud16,
Definition 2.17].

Definition 2.2. A hypermagma (M,⋆) is a set endowed with a hyperoperation. A
function f : M → N between hypermagmas is said to be:

• a (colax) morphism if it satisfies f(x ⋆ y) ⊆ f(x) ⋆ f(y) for all x, y ∈M ;
• a lax morphism if it satisfies f(x ⋆ y) ⊇ f(x) ⋆ f(y) for all x, y ∈M ;
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• a strict morphism if it is both a lax and colax morphism, satisfying f(x⋆y) =
f(x) ⋆ f(y) for all x, y ∈M .

We let HMag denote the category of hypermagmas with colax morphisms, which
we simply refer to as morphisms of hypermagmas.

On occasions where we wish to emphasize the hypermagma M to which a hy-
peroperation ⋆ belongs, we will use the notation ⋆M = ⋆.

Unlike much of the literature on hypergroups, we wish to allow for the possibility
that x ⋆ y = ∅ in certain cases. For this reason, it is convenient to introduce a
relation ⊙ ⊆M ×M by setting

x⊙ y ⇐⇒ x ⋆ y ̸= ∅.

We will say that ⋆ is a total hyperopration ifM ̸= ∅ and ⊙ =M×M (i.e., x⋆y ̸= ∅
for all x, y ∈ M). Note that if ⋆ is total, and if we let P(M)∗ denote the set of
nonempty subsets of G, then ⋆ corestricts to an operation

⋆ : M ×M → P(M)∗,

which induces a binary operation ⋆ : P(M)∗ × P(M)∗ → P(M)∗.

A hypermagma (M,⋆) is said to be associative if it satisfies

x ⋆ (y ⋆ z) = (x ⋆ y) ⋆ z

for all x, y, z ∈ M . An associative hypermagma with identity will be called a
hypermonoid. We let HMon denote the full subcategory of uHMag consisting of
hypermonoids.

Let M be a hypermagma. We say that an element e ∈ M is a weak identity if,
for all x ∈M ,

x ∈ e ⋆ x ∩ x ⋆ e.

Note that a weak identity need not be unique. For example, endow any nonempty
set X with the hyperproduct is given by x ⋆ y = X for all x, y ∈ X. (This will be
shown in Proposition 3.1 to be a cofree hypermagma.) Then every element of X is
a weak identity, so that uniqueness fails when X has at least two elements.

If the stronger condition

x = e ⋆ x = x ⋆ e

holds for all x ∈ M , then we will say that e is an identity for G. In this case, a
familiar argument shows that an identity is unique if it exists. (In the literature on
hypergroups, what we call a weak identity is typically called an identity, while what
we call an identity is referred to as a scalar identity. See [CL03] for more details.)
We refer to a hypermagma with identity as a unital hypermagma, and we let uHMag
denote the category of unital hypermagmas with unit-preserving morphisms.

Let M be a hypermagma with identity e, and fix x ∈M . An element x′ ∈M is
an inverse for x if e ∈ x⋆x′ ∩ x′ ⋆x. Note that inverses of this sort can be far from
unique. (For instance, given any set X endow M = X ⊔{e} with a hyperoperation
such that e is an identity and x ⋆ y =M for all x, y ∈ X; then any two nonidentity
elements are inverse to one another.) Thus we will reserve the notation x−1 for the
situations in which x has a unique inverse. One can easily verify that the identity
is its own unique inverse, so that we are justified in writing e−1 = e.
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Beyond simply demanding the uniqueness of inverses, there is a more princi-
pled assumption that is typically employed in the study of hypergroups. Roughly
speaking, the idea is to require that inverses allow us to “solve for” elements that
appear in products (or sums). A hypermagma M is said to be reversible if there is
a function (−)−1 : M →M such that

x ∈ y ⋆ z =⇒ y ∈ x ⋆ z−1 and z ∈ y−1 ⋆ x

for all x, y, z ∈ M . (Although it was not endowed with a name, a version of this
property was already assumed in the seminal work of Marty [Mar34, p. 46].) In
the case where M has an identity e, reversibility implies the existence of unique
inverses: for x ∈ x ⋆ e implies e ∈ x ⋆ x−1 and e ∈ x−1 ⋆ x, while if x′ is any other
inverse for x then e ∈ xx′ implies that x′ ∈ x−1 ⋆e so that x′ = x−1. It follows that
(−)−1 is an involution, and one can check that the reversibility implication can be
strengthened to the following equivalence for all x, y, z ∈M :

x ∈ y ⋆ z ⇐⇒ y ∈ x ⋆ z−1

⇐⇒ z ∈ y−1 ⋆ x.

If M and N are reversible hypermagmas with identity and f ∈ uHMag(M,N),
then by uniqueness of inverses we may deduce that f(m−1) = f(m)−1 for all m ∈
M . Thus the reversible structure is automatically preserved by unital morphisms.
Reversible hypergroups with identity form a particularly important category for
our considerations. For convenience, we introduce the following terminology.

Definition 2.3. A mosaic (M,⋆, e) is a hypermagma with identity that is also
reversible. We let Msc denote the full subcategory of uHMag whose objects are
mosaics, and we let cMsc denote the full subcategory of commutative mosaics.

Our commutative mosaics (including canonical hypergroups) will typically be
written additively (M,+, 0), with the additive inverse of y ∈ M written as −y
and x + (−y) = x − y. In the commutative case, the reversibility axiom takes the
simplified form

x ∈ y + z =⇒ z ∈ x− y.

Given any hypermagma M , one can define its opposite hypermagma in the fa-
miliar way: as a set Mop = {mop | m ∈M} with hypermultiplication

xop ⋆ yop = (y ⋆ x)op := {zop | z ∈ y ⋆ x}.
As in the case of groups, the inversion of a mosaic gives an isomorphism of M
with its opposite, or an anti-isomorphism, thanks to the next lemma. For a subset
S ⊆M of a mosaic, we will use the notation

S−1 = {s−1 | s ∈ S}.

Lemma 2.4. If M is a mosaic and x, y ∈M , then

(x ⋆ y)−1 = y−1 ⋆ x−1.

Proof. Let z ∈M . Then z ∈ (x ⋆ y)−1 if and only if z−1 ∈ x ⋆ y. By reversibility,

z−1 ∈ x ⋆ y ⇐⇒ y ∈ x−1 ⋆ z−1 ⇐⇒ x−1 ∈ y ⋆ z ⇐⇒ z ∈ y−1 ⋆ x−1. □

Finally we arrive at hypergroups, the original motivation for this study. We will
work with the following definition of hypergroups. Although it is a bit stronger
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than some definitions given in the literature, it is quite close to Marty’s original
definition [Mar34], with the only difference being the requirement of an identity.
(This is what Marty called a “completely regular” hypergroup).

Definition 2.5. A hypergroup (G, ⋆, e) is a total, associative, reversible hyper-
magma. A canonical hypergroup (G,+, 0) is a commutative reversible hypergroup.
We let HGrp denote the full subcategory of uHMag whose objects are the hyper-
groups, while Can denotes the full subcategory of canonical hypergroups.

The standard definition for hypergroups requires that the hyperoperation be
total. In practice, we have found it easy to accidentally overlook this condition.
The following fact alleviates this problem. A version of this was remarked in [Mit72,
p. 168].

Lemma 2.6. Let (G, ⋆) be a hypermagma. Suppose that G is associative and that
there exists z ∈ G such that:

• x ⋆ z ̸= ∅ for all x ∈ G;
• for all y ∈ G, there exists y′ ∈ G such that z ∈ y ⋆ y′.

Then ⋆ is total. In particular, a mosaic is a hypergroup if and only if it is associa-
tive.

Proof. Note that G ̸= ∅ because z ∈ G. Let x, y ∈ G, and fix y′ ∈ G such that
z ∈ y ⋆ y′. Note that

∅ ̸= x ⋆ z ⊆ x ⋆ (y ⋆ y′) = (x ⋆ y) ⋆ y′.

So (x ⋆ y) ⋆ y′ is nonempty. It follows from (2.1) that x ⋆ y ̸= ∅, proving that ⋆ is
total.

Now suppose that (G, ⋆, e) is an associative mosaic, with ⋆ not necessarily total.
Then z = e and the elements y′ = y−1 for each y ∈ G satisfy the hypotheses above.
It follows that ⋆ is total and G is a hypergroup. □

Another situation in which this lemma may be useful is when G is a hypermagma
with a zero (or absorbing) element 0 ∈ G, in the sense that x · 0 = 0 = 0 · x for all
x ∈ G. For if we set z = 0 and all y′ = 0, then the hypotheses of Lemma 2.6 are
satisfied.

We remark that if C is any of the categories of hyperstructures pictured in Fig-
ure 1, then we let Cstr denote the wide subcategory of C whose morphisms are the
strict morphisms as in Definition 2.2.

2.1. Substructures of hyperstructures and associated morphisms. The the-
ory of subobjects in these categories is subtle and will be revisited in Subsection 3.2
below. For the moment, we introduce the following definitions in an effort to dis-
tinguish between different types of injective morphisms.

Definition 2.7. Let M be a hypermagma. A strict subhypermagma of M is a
subset L ⊆ M such that, for any x, y ∈ L, we have x ⋆ y ⊆ L. If M is a unital
hypermagma (resp., mosaic, hypergroup), we define a strict unital subhypermagma
(resp., strict submosaic or strict subhypergroup) to be a strict subhypermagma that
also contains the identity (resp., and closed under taking inverses).
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The reasoning behind this terminology is that strict subhypermagmas (mosaics,
etc.) L of M exactly correspond to injective strict morphisms i : L→M of hyper-
magmas (mosaics, etc.).

On the other hand, every subset of a hypermagma induces an injective morphism
in the following way.

Definition 2.8. Let M be a hypermagma and let L ⊆ M be a subset. Define a
hyperoperation on L by

x ⋆L y = (x ⋆M y) ∩ L.
We refer to (L, ⋆L) as a weak subhypermagma of L. Given such a weak subhyper-
magma, we furthermore define the following:

• If M is unital, then L is a weak unital subhypermagma if eM ∈ L.
• If M is a mosaic, then L is a weak submosaic if eM ∈ L and L is closed
under formation of inverses.

It is clear that if L is a weak subhypermagma (resp., unital subhypermagma,
submosaic) of M , then the inclusion function i : L → M is a morphism in HMag
(resp., uHMag, Msc). Note that ifM is an associative hypermagma, then any strict
subhypermagma of M is automatically associative. However, there is no reason for
a weak subhypermagma of M to remain associative.

We take this opportunity to define two properties of morphisms that will be of
importance throughout this paper, one of which corresponds to weak subhypermag-
mas.

Definition 2.9. A morphism of hypermagmas p : M → N is short if it is surjective
and satisfies

x ⋆ y = p(p−1(x) ⋆ p−1(y)) (2.10)

for all x, y ∈ N . Dually, a morphism i : L → M is coshort if it is injective and
satisfies

i−1(i(x) ⋆ i(y)) = x ⋆ y (2.11)

for all x, y ∈ L.

It is straightforward to check that a coshort morphism i : L → M is the same
as an isomorphism of L onto the weak subhypermagma i(L) of M . This makes it
easy to verify that coshort morphisms are closed under composition. Notice that
the containment “⊇” of (2.11) holds for any morphism i, so that the condition is
equivalent to

i−1(i(x) ⋆ i(y)) ⊆ x ⋆ y.

Dually, short morphisms are closed under composition; indeed, if L
p
↠ M

q
↠ N

is a sequence of short morphisms, then for x, y ∈ N we have

x ⋆ y = q(q−1(x) ⋆ q−1(y))

= q(p(p−1(q−1(x)) ⋆ p−1(q−1(y))))

= (q ◦ p)((q ◦ p)−1(x) ⋆ (q ◦ p)−1(y)).

Once again the containment “⊇” of (2.10) always holds, so that the condition is
equivalent to

x ⋆ y ⊆ p(p−1(x) ⋆ p−1(y)).
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The following shows that the conditions of injectivity and surjectivity in the
definition above are redundant in the unital case.

Lemma 2.12. Let L, M , and N be unital hypermagmas, and let i ∈ uHMag(L,M)
and p ∈ uHMag(M,N). Then p is short if and only if it satisfies (2.10), and i is
coshort if and only if it satisfies (2.11).

Proof. Suppose that p is unital and satisfies (2.10). To see that p is surjective, let
x ∈ N . Then

x = x ⋆ eN = p(p−1(x) ⋆ p−1(eN )))

shows that x is in the image of p. So p is surjective and thus is short.
Now suppose that i is unital and satisfies (2.11). Fix x ∈ L. Then

i−1(i(x)) = i−1(i(x) ⋆ eM ) ⊆ x ⋆ eM = x

shows that there is a unique element mapping to i(x) under i. So i is injective and
therefore short.

The converse implications are trivial. □

We will revisit short and coshort morphisms in Subsections 3.2 and 4.1, which
will reveal their role as regular epimorphisms and monomorphisms. In the mean-
time, we record the following result describing properties that pass to “quotient”
hypermagmas via short morphisms.

Lemma 2.13. Let p : M → N be a morphism of hypermagmas. Suppose that p is
short. Then:

(1) If M is commutative, then so is N .
(2) If M is associative, then so is N .

Proof. (1) If M is commutative and x, y ∈ N , then shortness gives

x ⋆ y = p(p−1(x) ⋆ p−1(y)) = p(p−1(y) ⋆ p−1(x)) = y ⋆ x.

Thus N is commutative.
(2) Assume M is associative. Given x, y, z ∈ N , we claim that

(x ⋆ y) ⋆ z = p(p−1(x) ⋆ p−1(y) ⋆ p−1(z)) = x ⋆ (y ⋆ z).

We will verify the first equality above, with the second following by symmetry.
Because p is a surjective morphism we certainly have

p(p−1(x) ⋆ p−1(y) ⋆ p−1(z)) ⊆ p(p−1(x) ⋆ p−1(y)) ⋆ p(p−1(z)) ⊆ (x ⋆ y) ⋆ z.

Conversely, suppose that w ∈ (x⋆y)⋆z. Then w ∈ u⋆z for some u ∈ x⋆y. Because
p is short, this means that there exist

x0 ∈ p−1(x), y0 ∈ p−1(y), z0 ∈ p−1(z), w0 ∈ p−1(w),

such that w0 ∈ u0 ⋆ z0 and u0 ∈ x0 ⋆ y0. But then

w0 ∈ (x0 ⋆ y0) ⋆ z0 = x0 ⋆ y0 ⋆ z0 ⊆ p−1(x) ⋆ p−1(y) ⋆ p−1(z),

so that

w = p(w0) ∈ p(p−1(x) ⋆ p−1(y) ⋆ p−1(z))

as desired. □
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2.2. Some examples of hypergroups and hypermagmas. Before passing to
the level of categories of hyperstructures, we pause to mention a few sources of
examples of hypermagmas and hypergroups.

We begin with some classical examples arising from ordinary group theory. Two
of these are obtained as certain quotients of a group in the following way. Let G
be a group, and let ∼ be an equivalence relation on G such that the equivalence
classes satisfy the following properties for all a, b ∈ G and the identity e ∈ G:

(i) The setwise product satisfies [e][a] = [a] = [a][e],
(ii) Setwise inversion satisfies [a]−1 = [a−1].
(iii) The setwise product [a][b] of any two equivalence classes is a union of equiv-

alence classes.

Then we define a hyperoperation on G/∼ by

[a] ⋆ [b] = {[c] | [c] ⊆ [a][b]} = {[c] | c ∈ [a][b]}. (2.14)

This is easily verified from conditions (i)–(iii) to be reversible hypermagma with
identity [e] and [a]−1 = [a−1]. It is also associative since

[a] ⋆ ([b] ⋆ [c]) = {[w] | w ∈ [a][b][c]} = ([a] ⋆ [b]) ⋆ [c].

Thus G/∼ is a hypergroup, and the observation that ab ∈ [a][b] for all a, b ∈ G
ensures that canonical surjection G ↠ G/∼ sending a 7→ [a] is a morphism of
hypergroups.

Example 2.15. Let G be a group and let K be a subgroup of G. The equiva-
lence relation ∼ induced by the double coset partition of G satisfies conditions (i)–
(iii). The resulting quotient G//K is the double coset space, and the hyperopera-
tion (2.14) in this case takes the form

KaK ⋆ KbK = {KcK | KcK ⊆ (KaK)(KbK)}
= {KcK | c ∈ KaKbK}.

This makes G//K into a hypergroup (see also [DO38, p. 720]) with identity KeK =
K and inverses (KaK)−1 = Ka−1K, which coincides with the ordinary quotient
group in case K is a normal subgroup.

Example 2.16. For any group G, the equivalence relation induced by the action
of conjugation satisfies conditions (i)–(iii) above. The corresponding quotient G is
the set of conjugacy classes in G; let Cg denote the conjugacy class of g ∈ G. In
this case the hyeroperation (2.14) is

Ca ⋆ Cb = {Cg | Cg ⊆ Ca · Cb} = {Cg | g ∈ CaCb}.

Using xCa = xCax
−1x = Cax for all a, x ∈ G, we have CaCb = CbCa and therefore

Ca ⋆ Cb = Cb ⋆ Ca for all a, b ∈ G. It follows as in [Die46] that G is a canonical
hypergroup.

Example 2.17. Let A be an abelian group and let G be a group acting by auto-
morphisms on A. The orbit equivalence relation on A satisfies conditions (i)–(iii), so
that the quotient A/G becomes a canonical hypergroup under the hyperoperation

Ga+Gb = {Gc | c ∈ Ga+Gb}.

This construction forms the underlying additive hypergroup of quotient hyperrings
and hyperfields as introduced by Krasner in [Kra83].
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Example 2.18. Now suppose that G is a finite group, and let Ĝ = {χi} denote

the set of irreducible complex characters of G. Given ϕ, ψ ∈ Ĝ, their product is a
character and can be expressed as a nonnegative sum of irreducible characters. We
obtain a hyperoperation by setting

ϕ ⋆ ψ =
{
χi | ni ̸= 0 in ϕ · ψ =

∑
niχi

}
.

As discussed in [Rot75, Section 2], this gives Ĝ the structure of a canonical hyper-
group, whose identity is the character of the trivial representation and with inverses
given by complex conjugates.

Many of the hypergroups and hypermagmas of interest for us do not originate
from group theory. Below are a few other examples of hypergroups.

Example 2.19. The Krasner hyperfield K = {0, 1} is the hyperring with the
uniquely determined multiplication (where 0 is the multiplicative zero element and
1 is the multiplicative identity) and with addition given by letting 0 be the additive
identity and setting

1 + 1 = {0, 1}.
This is easily seen to be a hyperfield [CC11]. In Section 4 we will be interested in
the additive hypergroup structure of K.

Example 2.20. Let (L,∧) be meet-semilattice. We may define a commutative
hyperoperation on L as follows: for a, b ∈ L,

a? b = {c ∈ L | a ∧ c = b ∧ c = a ∧ b}.

Under the inversion given by a−1 = a for all a ∈ L, it is easily verified that this
is a reversible hypermagma. Thus if L has a top element 1, then (L,?, 1) is a
commutative mosaic.

Now assume that (L,∨,∧, 0, 1) is in fact a bounded lattice. Nakano showed [Nak67,
Theorem 1] that (L,?, 1) forms a hypergroup if and only if L is modular (see
also [CL03, Section 4.3]). (Recall that a lattice (L,∨,∧, 0, 1) is modular if it sats-
fies the modular law: for all a, b, c ∈ L, if a ≤ c then a ∨ (b ∧ c) = (a ∨ b) ∧ c.)

Finally, the following example illustrates that hyperoperations are flexible enough
to include partial binary operations and their resulting partial structures.

Example 2.21. We recall from [HR14, Section 3.2] that a partial group is a set G
equipped with a reflexive, symmetric binary relation ⊙ ⊆ G × G of commeasura-
bility, with a globally defined unary operation (−)−1 : G → G, a partially defined
operation ∗ : ⊙ → G, and an element e ∈ G such that any set S ⊆ G of pair-
wise commeasurable elements is contained in a pariwise commeasurable set A ⊆ G
containing e on which ⋆ restricts to give the structure of an abelian group. The
category pGrp has partial groups for objects, and its morphisms are those functions
that preserve pairwise commeasurability, identity, and products of commeasurable
elements.

If G is such a partial group, then we may extend the domain of its product to
view it as a hyperoperation ⊛ : G×G→ P(G) by defining

a⊛ b =

{
a ∗ b, (a, b) ∈ ⊙,
∅, (a, b) /∈ ⊙.
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It is straightforward to verify that (G,⊛, e) becomes a commutative mosaic, and
that every morphism of partial groups is a morphism of mosaics. In this way we
obtain a faithful functor

pGrp cMsc,

and one can check that this is also full. In this way partial groups are isomorphic
to a full subcategory of commutative mosaics.

3. Categories of hypermagmas

We now turn our attention to fundamental properties of the various categories
of hyperstructures.

3.1. Forgetful functors and (co)limits. Although hyperoperations can be viewed
as a type of multivalued function, morphisms of hypermagmas are ordinary func-
tions between sets. Thus we have a forgetful functor from HMag to Set, which will
give us a good handle on formation of limits and colimits.

Proposition 3.1. The forgetful functor

U : HMag → Set

has both a left adjoint F and a right adjoint D.

Proof. For any set X, define hyperoperations ⋆F and ⋆D by setting

x ⋆F y = ∅ and

x ⋆D y = X

for all x, y ∈ X. We obtain functors F,D : Set → HMag that act on objects setting
F (X) = (X, ⋆F ) and D(X) = (X, ⋆D) and act identically on morphisms. Note that

UF = UD = 1Set.

For any hypermagma G, it follows directly from the triviality of ⋆F and ⋆D that U
induces natural bijections

HMag(F (X), G) ∼= Set(UF (X), U(G)) = Set(X,U(G)),

HMag(G,D(X)) ∼= Set(U(G), UD(X)) = Set(U(G), X).

Thus we have an adjoint triple F ⊣ U ⊣ D. □

The functors F and U above respectively yield free hypermagmas and cofree
hypermagmas over a given set. One consequence of this will be discussed in Propo-
sition 3.13, that monomorphisms and epimorphisms correspond to injective and
surjective morphisms, respectively. Notice, however, that bijective morphisms in
HMag need not be isomorphisms. For instance, given a set X the identity function
on underlying sets gives a bijective morphism F (X) → D(X) between the free and
cofree hypermagmas on X. But these are certainly not isomorphic as hypermag-
mas if X ̸= ∅. Thus U does not reflect isomorphisms; in particular, the adjunction
F ⊣ U is not monadic. On the other hand, D makes Set monadic over HMag. A
more natural way to state this is the following.

Corollary 3.2. The cofree functor D : Set → HMag gives an isomorphism of Set
onto a reflective subcategory of HMag.
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Proof. We continue to let U : HMag → Set denote the forgetful functor. From the
proof of Proposition 3.1 we have UD = 1Set, so that the counit ϵ : UD ⇒ 1Set
of the adjunction U ⊣ D is an isomorphism. In this case it is well known [Rie16,
Lemma 4.5.13] that U is an equivalence onto a reflective subcategory. The fact that
U is an isomorphism onto its image again follows from the very strong condtion
UD = 1Set. □

All small limits and colimits of hypermagmas can be constructed by endowing
the corresponding (co)limit of sets with an appropriate hyperoperation.

Proposition 3.3. The forgetful functor U : HMag → Set creates all limits and
colimits. In particular, HMag is complete and cocomplete.

Proof. By the product-equalizer formulation of limits [ML98, V.2] and its dual, it
suffices to verify the creation of (co)products and (co)equalizers.

To verify the claim for (co)products, let (Gi)i∈I be a tuple of hypermagmas.
Define a hyperoperation on the set-theoretic product

∏
Gi for elements a = (ai)i∈I

and b = (bi)i∈I of
∏
Gi by setting

a ⋆ b =
∏

(ai ⋆ bi) ⊆
∏

Gi.

It is routine to check that it also satisfies the universal property of a product in
HMag. Similarly, we may endow the disjoint union

⊔
Gi with the hyperoperation

⊔i,jGi ×Gj
∼= (⊔Gi)× (⊔Gj) → P (⊔Gi)

that is empty on each Gi ×Gj for i ̸= j but agrees with the hyperoperation of Gi

on Gi × Gi → P(Gi) ⊆ P(⊔Gi). One can then verify that this is a coproduct of
hypermagmas.

Next let f, g : G → H be a parallel pair of morphisms in HMag, and denote the
set-theoretic equalizer and coequalizer by

E G H K.i
f

g

π

Define a hyperoperation on E = {x ∈ G | f(x) = g(x)} by

x ⋆E y = (x ⋆G y) ∩ E

for any x, y ∈ E. It is straightforward to verify that (E, ⋆E) acts as an equalizer of
f and g in the category of hypermagmas.

Finally, we define a hyperoperation on K by setting

x ⋆K y = π(π−1(x) ⋆H π−1(y))

for x, y ∈ K. This equips K with the structure of a hypermagma, and the definition
of ⋆K ensures that π : H → K is a morphism of hypermagmas. Suppose that
w ∈ HMag(H,L) coequalizes f and g, and let

w : H
π−→ K

u−→ L

be the factorization of w in Set given by the universal property of K. To verify
that u is a morphism in HMag, let x, y ∈ K and fix z ∈ x ⋆K y. Then there exists
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z0 ∈ x0 ⋆ y0 for some x0 ∈ π−1(x) and y0 ∈ π−1(y) such that z = π(z0). Then

u(z) = u(π(z0)) = w(z0)

∈ w(x0 ⋆ y0) ⊆ w(x0) ⋆ w(y0)

= u(π(x0)) ⋆ u(π(y0)) = u(x) ⋆ u(y).

This establishes u(x ⋆ y) ⊆ u(x) ⋆ u(y), so that u is a morphism of hypermagmas as
desired. □

In the special case of the empty (co)limit, it follows that U also creates initial
and terminal objects. Indeed, it is clear that HMag has initial object given by the
empty set with its unique hyperoperation ∅×∅ → P(∅) and terminal object given
by the singleton set 1 with the hyperoperation corresponding to its unique binary
operation 1× 1 → 1.

In the case of unital hypermagmas, there is a “finer” forgetful functor to the
category of pointed sets

uHMag Set•

Set

U•

U

(3.4)

that can be more useful than the forgetful functor to sets. It is given by sending a
unital hypermagma M to the pointed set (M, eM ).

The category Set• is complete and cocomplete, with products given by the direct
product and coproducts by the wedge sum: the quotient of the disjoint union that
identifies all basepoints.

Theorem 3.5. The forgetful functors from unital hypermagmas to each of sets
and pointed sets in (3.4) both have left adjoints. Both functors creates all limits in
uHMag, and U• creates all coproducts in uHMag.

Proof. Given (X,x0) ∈ Set•, define a hyperoperation ⋆F on X by taking x0 ⋆F x =
x = x ⋆F x0 for all x ∈ X and x ⋆F y = ∅ for all x, y ∈ X \ {x0}. We obtain a
functor

Set• → uHMag,

(X,x0) 7→ (X, ⋆, x0).

Notice that U•F = 1Set• , and that U• induces natural bijections

uHMag(F (X,x0),M) ∼= Set•(U•F (X), U•(M)) = Set•((X,x0), U•(M)).

Thus F ⊣ U• as desired. Note that the forgetful functor Set• 99K Set also has a left
adjoint (given by freely adjoining a basepoint), which composes with F to yield a
left adjoint to U : uHMag → Set.

To see that these forgetful functors create products, fix a family (Mi, ⋆i, ei)i∈I of
unital hypermagmas. Because the product hypermagma

∏
Mi of Proposition 3.3

has identity element e = (ei) ∈
∏
Mi and the projections to each Mi are unital,

this also forms a product in the category uHMag.
Next take the wedge sum S =

∨
(Mi, ei), and again denote its basepoint by

e ∈ S. Let I0 = I ⊔ {0} be a poset in which 0 is the smallest element and all
elements of I are incomparable. Then let D : I0 → HMag be the diagram given on
objects by D(0) = 1 and D(i) = Mi for i ∈ I, and which sends each arrow 0 ≤ i
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to the unique unital morphism 1 → Mi. Then the underlying set of the colimit of
D in HMag coincides with S =

∨
Mi and unit given by the basepoint e ∈ S. One

can verify from its construction via the diagram D that it satisfies the universal
property of the coproduct in uHMag.

Finally, the creation of the equalizer of a parallel pair of morphisms f, g ∈
uHMag(G,H) is deduced just as in the proof of Proposition 3.3. Indeed, the
set-theoretic equalizers of G and H will be basepoint-preserving because f and
g preserve the identity elements, and the hyperoperations created as in that proof
will be unital for the same reason. □

Unlike the case of hypermagmas, the forgetful functors of (3.4) do not have right
adjoints. Indeed, if they had right adjoints then the forgetful functors U and U•
would both preserve coequalizers. But the following counterexample illustrates a
case where this fails to happen.

Example 3.6. Endow D = {0, 1, 2} with the structure of a commutative hyper-
magma where 0 is an identity and

1 + 1 = 1 + 2 = 2 + 2 = D.

On the underlying pointed set X = U•D, we may also define the structure of a
hypermagma using the free unital hypermagma FX of Theorem 3.5. Let f, g ∈
uHMag(FX,D) be the morphisms defined by

f(1) = 1, f(2) = 2, g(1) = 0, g(2) = 2.

Then the coequalizer K of f and g in either of the categories Set• or HMag has
underlying set given by the set-theoretic coequalizer, which is equal to {[0], [2]}.
Furthermore, the coequalizer in HMag has a hyperoperation satisfying

[0] + [0] = {[t] | t ∈ x+ y where [x] = [y] = [0] for x, y ∈ D}
= {[t] | t ∈ (0 + 0) ∪ (0 + 1) ∪ (1 + 1)}
= {[0], [2]}.

Thus [0] is not an identity, so that K is not a unital hypermagma. This means that
the forgetful functor uHMag → HMag (and by extension uHMag → Set) as well as
uHMag → Set• do not preserve coequalizers.

To overcome this problem, we will need to make use of the following universal
construction. If f : M → N is a morphism of hypermagmas and if N has identity
e, we define the kernel of f to be

ker f = f−1(eN ) ⊆M.

Note that this term will apply even if M itself is not unital, or if M is unital but
f does not preserve the identity. In such cases, it is possible for the kernel of a
morphism to be empty.

Definition 3.7. Given a hypermagma M and a (possibly empty) subset E ⊆ M ,
a unitization of M relative to E (ME , πE) is a unital hypermagma equipped with
a universal morphism πE : M → ME that sends every element of E to the unit of
ME . That is, the pair (ME , πE) represents the functor uHMag → Set given by

N 7→ {f ∈ HMag(M,N) | E ⊆ ker f = f−1(eN )}.
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We will show that this universal object exists below. Its construction will be
facilitated by the following property.

Definition 3.8. For a hypermagma M , a subset K ⊆ M is absorptive if, for all
x ∈M ,

(x ⋆ K ∪K ⋆ x) ∩K ̸= ∅ =⇒ x ∈ K.

Remark 3.9. Several comments are in order. Let M denote a hypermagma
throughout.

(1) If f ∈ HMag(M,N) and N is unital, then ker f ⊆M is absorptive. Indeed,
let x ∈M and suppose there exists y ∈ x ⋆ ker f ∩ ker f (with a symmetric
argument applying in case y ∈ (ker f)⋆x∩ker f). Then there exists u ∈ ker f
with y ∈ x ⋆ u, so that

eN = f(y) ⊆ f(x ⋆ u) ⊆ f(x) ⋆ f(u) = f(x) ⋆ eN = {f(x)}.
This forces f(x) = eN , so that x ∈ ker f .

(2) If M is unital with e = eM and K ⊆ M is absorptive and nonempty, then
e ∈ K. Indeed, if k ∈ K then e ⋆ k = k ∈ (e ⋆ K) ∩K yields e ∈ K.

(3) The absorptive property can be seen as dual to the property of being a
strict subhypermagma in the following way. Suppose K ⊆ M and that
x, y, z ∈M satisfy

z ∈ x ⋆ y ∪ y ⋆ x.
If K is a strict subhypermagma then x, y ∈ K =⇒ z ∈ K. On the other
hand, if K is absorptive then y, z ∈ K =⇒ x ∈ K.

(4) The properties of being either absorptive or a strict subhypermagma are
preserved under arbitrary intersection in P(M). Thus every subset of M
is contained in a smallest (absorptive) strict subhypermagma of M , which
we say is generated by that set.

(5) If M is a mosaic and K ⊆ M is a strict submosaic, then K is absorptive.
Indeed, if x ∈M and (x⋆K ∪K ⋆x)∩K ̸= ∅, we may assume without loss
of generality that there exist y, z ∈ K with z ∈ x ⋆ y. But then y−1 ∈ K
and strictness of K yield x ∈ z ⋆ y−1 ⊆ K as desired.

Lemma 3.10. Let M be a hypermagma and let E ⊆ M be a subset. Then there
exists a unitization (ME , πE), whose kernel is the smallest absorptive strict subhy-
permagma of M containing E. Furthermore, πE : M → ME is short if E satisfies
the following condition: for all x ∈M , x ⋆ E ̸= ∅ ̸= E ⋆ x.

Proof. If E = ∅ we can easily extend the hyperoperation of M to one on M∅ :=
M ⊔ {e} such that e is a unit. It is then clear that this object with the natural
inclusion π∅ = i : M ↪→M∅ satisfies the universal property.

So we may assume now that E ̸= ∅. Let K ⊆ M be the smallest absorptive
strict subhypermagma of M that contains E, as in Remark 3.9(4). Let ∼ be the
equivalence relation on M defined by setting x ∼ y if and only if either x, y ∈ K or
there exists a sequence x = z1, z2, . . . , zn = y in M such that each

zi+1 ∈ zi ⋆ K ∪K ⋆ zi or zi ∈ zi+1 ⋆ K ∪K ⋆ zi+1

for i = 1, . . . , n − 1. This is evidently reflexive (by taking n = 1 above) and
symmetric, and transitivity is readily deduced by recalling that K is absorptive. It
also follows from this construction that if x ∈M and u ∈ K, then x ∼ u ⇐⇒ x ∈
K, so that K forms an equivalence class.
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LetME be the quotient ofM by∼ and let πE = π denote the canonical surjection

π : M ↠M/∼ =ME .

Let e ∈ME denote the image of the equivalence class K, so that π−1(e) = K ⊇ E.
We will alternatively denote equivalence classes of x ∈ M as [x] = π(x) ∈ ME .
Define a hyperoperation on ME by

[x] ⋆ [y] :=


π(π−1([x]) ⋆ π−1([y])), [x] ̸= e ̸= [y],

{[x]}, [y] = e,

{[y]}, [x] = e.

By construction e is an identity for ME . We claim that π ∈ HMag(M,ME) is
a morphism of hypermagmas, which is to say that π(x ⋆ y) ⊆ π(x) ⋆ π(y) for all
x, y ∈ M . This follows immediately from the construction above if [x] ̸= e ̸= [y].
If [y] = e then y ∼ u for some u ∈ E. Then if z ∈ x ⋆ y, by construction of ∼ it
follows that z ∼ x. Thus π(x ⋆ y) ⊆ [x] = [x] ⋆ e = π(x) ⋆ π(y), and a symmetric
argument holds in case [x] = e.

It remains to demonstrate the universal property. Suppose that N is a uni-
tal hypermagma and that f ∈ HMag(M,N) satisfies f(E) = eN . Let ≈ be the
equivalence relation on M given by

x ≈ y ⇐⇒ f(x) = f(y).

Because f(E) = eN , it follows from Remark 3.9(1) that K ⊆ ker f . Thus we have
K ×K ⊆ ≈. Furthermore, suppose that x, y ∈M are such that y ∈ x ⋆K ∪K ⋆ x.
Fix u ∈ K with y ∈ x ⋆ u ∪ u ⋆ x. Then

f(y) ∈ f(x ⋆ u) ∪ f(u ⋆ x)
⊆ f(x) ⋆ f(u) ∪ f(u) ⋆ f(x)
= f(x) ⋆ eN ∪ eN ⋆ f(x)

= {f(x)}.

Then f(y) = f(x) so that y ≈ x. It follows by construction of ∼ that ∼ ⊆ ≈.
Thus f factors uniquely as f = g ◦ π where g : ME → N is the well-defined

function given by g([x]) = f(x). We claim that g ∈ uHMag(ME , N), from which
the universal property of (ME , π) will follow. By construction we have g(e) =
f(π(E)) = eN , so that g preserves unit elements. If [x] ̸= e ̸= [y] in ME , then

g([x] ⋆ [y]) = g(π(π−1(x) ⋆ π−1(y)))

= f(π−1(x) ⋆ π−1(y)))

⊆ f(π−1(x)) ⋆ f(π−1(y))

= g([x]) ⋆ g([y]).

An easier argument verifies that g([x] ⋆ [y]) ⊆ g([x]) ⋆ g([y]) in case either [x] or [y]
equals e ∈ME .

Finally, we verify the claim about shortness of π. Note that

[x] ⋆ [y] = π(π−1([x]) ⋆ π−1([x]))

holds for all nonidentity elements [x] ̸= e ̸= [y] by construction. In the case where
x ⋆ E ̸= ∅ ̸= E ⋆ x for all x ∈M , we can verify in the case [y] = e as follows:

∅ ̸= π(x ⋆ E) ⊆ π(π−1([x]) ⋆ π−1(e)) ⊆ [x] ⋆ e = {[x]},
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from which we conclude that π(π−1([x]) ⋆ π−1(e)) = {[x]} = [x] ⋆ e. A symmetric
argument applies in the case where [x] = e and [y] is arbitrary. □

We can now apply unitization to construct coequalizers as follows.

Theorem 3.11. The category uHMag is complete and cocomplete.

Proof. In light of Theorem 3.5, it only remains to show that the category has
coequalizers. Consider a parallel pair of morphisms f, g ∈ uHMag(M,N), form
their coequalizer (L, πL) in HMag, and denote E = {πL(eN )} ⊆ L. We claim that
the morphism π = πE ◦ πL : N → LE in the diagram

M N L LE

f

g

πL

π

πE

induced by the unitization (LE , πE) of Lemma 3.10 is a coequalizer in uHMag. It
follows from the construction of π both that it is unital and that it coequalizes f
and g. Furthermore, given any other coequalizing morphism h ∈ uHMag(N,P ) ⊆
HMag(N,P ), we see that h factors uniquely through πL via a morphism of hyper-
magmas. But the fact that h is unital means that it must further factor through
πE by the universal property of LE . Thus h factors uniquely through π = πEπL as
desired. □

Remark 3.12. Note that the coequalizer π = πE ◦ πL constructed above is short.
Indeed, πL is short by its construction in Proposition 3.3, and because shortness is
preserved under composition, it is enough to verify that πE is short. This will follow
from Lemma 3.10 if we can verify that, for all x ∈ L, we have x ⋆ E ̸= ∅ ̸= E ⋆ x.
Writing x = πL(y) for some y ∈ N , we have

x ⋆ E = πL(y) ⋆ πL(eN ) ⊇ πL(y ⋆ eN ) = {x}.
Thus x ⋆ E ̸= ∅ as desired, and similarly we have x ∈ E ⋆ x ̸= ∅.

3.2. Characterizations of various morphisms. In this section we focus on char-
acterizations of various morphisms in categories of hypermagmas. This includes
characterizations of categorically-defined morphisms in terms of hypermagma struc-
ture, as well as characterizations of strict morphisms of hypermagmas in categorical
terms.

We begin by investigating various degrees monomorphisms and epimorphisms in
the categories HMag and uHMag, whose definitions we recall. There is no surprise
in the characterization of ordinary monomorphisms and epimorphisms.

Proposition 3.13. In each of the categories HMag and uHMag, the monomor-
phisms are the injective morphisms and the epimorphisms are the surjective mor-
phisms.

Proof. Suppose that C is either of the categories HMag or uHMag. Because the
forgetful functor U : C → Set is faithful, it reflects monomorphisms and epimor-
phisms. The fact that U has a left adjoint in the case of HMag further implies that
it preserves monomorphisms.

For C = HMag the forgetful functor also has a right adjoint, so that it preserves
epimorphisms as well. Finally, we show that if f ∈ uHMag(M,N) is not surjective,
then it is not an epimorphism. Consider the unital hypermagma D = {1,−1, 0}
for which 0 is an (additive) identity and x + y = D for x, y ∈ D \ {0}. Define
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morphisms g, h ∈ uHMag(N,D) on nonidentity elements x ∈ N \ {eN} by g(x) = 1
and

h(x) =

{
1, x ∈ f(M),

−1, x /∈ f(M).

Then g ◦ f = h ◦ f , but g ̸= h since f(M) ⊊ N . Thus f is not epic. □

Next we consider regular monomorphisms and epimorphisms. Recall that a
regular epimorphism (resp., monomorphism) in a category C is defined to be a
coequalizer (resp., equalizer) in C. For hypermagmas, the (co)short morphisms of
Definition 2.9 turn out to be the correct characterization.

Theorem 3.14. In each of the categories HMag and uHMag, the regular epimor-
phisms are the short morphisms and the regular monomorphisms are the coshort
morphisms.

Proof. It is clear from the construction of coequalizers in Proposition 3.3 that reg-
ular epimorphisms in HMag are short, and the case of uHMag was discussed in
Remark 3.12. Conversely, suppose that p : M ↠ N is a short morphism of (unital)
hypermagmas. Let ∼ be the equivalence relation onM defined by x ∼ y if and only
if p(x) = p(y), and let {xα} be a complete system of representatives for these equiv-
alence classes (including eM in the unital case). Let M0 = F (U(M)) be the free
(unital) hypermagma on the underlying (pointed) set of M , so that the product of
any two (non-unit) elements is always empty. We define morphisms f, g : M0 →M
by f(x) = x for all x and g(x) = xα for the unique α such that x ∼ xα. Then
f and g are morphisms of (unital) hypermagmas for which p is the coequalizer as
(pointed) sets.

To verify that p is in fact the coequalizer of f and g in HMag (resp., uHMag),
suppose that q : M → L is a morphism of hypermagmas with q ◦ f = q ◦ g. Then
q factors uniquely as q = h ◦ p for some function h : N → L (which preserves
basepoints in the unital case), and we wish to demonstrate that h is a morphism
of hypermagmas. Suppose that x, y ∈ N . Then because p is a short morphism, we
have

h(x ⋆ y) = h(p(p−1(x) ⋆ p−1(y)))

= q(p−1(x) ⋆ p−1(y))

⊆ q(p−1(x)) ⋆ q(p−1(y))

= h(p(p−1(x))) ⋆ h(p(p−1(y)))

= h(x) ⋆ h(y).

So h is a morphism of hypermagmas proving that p is coequalizer in HMag (resp.,
uHMag).

In the case of monomorphisms, it again follows from the proof of Proposition 3.3
and from Theorem 3.5 that equalizers in HMag and uHMag are coshort. To verify
the converse in the unital case, suppose that i ∈ uHMag(M,N) is a coshort mor-
phism. Consider the commutative unital hypermagma D = {0, a, b} in which 0 is
the identity and a+ a = a+ b = b+ b = D. Define f, g ∈ uHMag(N,D) by

f(x) =

{
0, x = eN ,

a, x ̸= eN ,
g(x) =


0, x = eN ,

a, x ∈ i(M) \ {eN},
b, x /∈ i(M).
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Both of these are morphisms of unital hypermagmas, and we claim that i is the
equalizer of this pair. It is clear that i is the set-theoretic equalizer of f and g.
So if q ∈ uHMag(L,N) satisfies f ◦ q = g ◦ q, then it uniquely factors as q = i ◦ h
for some function h : L → M . It remains to show that h is a morphism of unital
hypermagmas. Indeed, for any x, y ∈ L we have

ih(x ⋆L y) = q(x ⋆L y) ⊆ q(x) ⋆N q(y) = ih(x) ⋆N ih(y)

so it follows (invoking coshortness) that

h(x ⋆L y) ⊆ i−1(ih(x ⋆L y)) ⊆ i−1(ih(x) ⋆N ih(y)) ⊆ h(x) ⋆M h(y)

as desired.
A similar argument shows that if i ∈ HMag(M,N) is coshort, then it is an

equalizer. In this case, one uses the cofree hypermagma D = D({0, 1}) and shows
that i equalizes the constant 0 morphism and a non-constant morphism. We omit
the proof for the sake of brevity. □

We remark that several natural properties of hypermagmas are not preserved un-
der epimorphic images. For instance, free (unital) hypermagmas are both commu-
tative and associative for trivial reasons. Since every (unital) hypermagma admits
a surjective morphism from the free object on its underlying set, the existence of
noncommutative and nonassociative structures shows that these properties are not
preserved. By contrast, these properties are preserved under regular epimorphic
images, as shown in Lemma 2.13.

We can also use this characterization to show that (unital) hypermagmas form a
regular category, which is a fundamental property in categorical algebra [Gra21]. A
category C is regular if it is finitely complete, coequalizers of kernel pairs exist in C,
and regular epimorphisms are stable under pullback in C. In any regular category,
each morphism factors [Gra21, Theorem 1.11] uniquely up to isomorphism as a
regular epimorphism followed by a monomorphism. In this way, morphisms in
regular categories have images that are pullback-stable.

Corollary 3.15. The categories HMag and uHMag are both regular.

Proof. Each of these categories is (finitely) complete and admits all coequaliz-
ers. Thus it remains to show that regular epimorphisms—or equivalently, short
morphisms—are preserved under pullbacks. Let p : M → N be a short surjective
morphism in either of these categories, and let f : L → N be any morphism. The
pullback

L×N M L

M N

π

f

p

has underlying set given by the pullback of sets L ×N M = {(x, x′) ∈ L ×M |
f(x) = p(x′)}, with hyperoperation

(x, x′) ⋆ (y, y′) = [(x ⋆L y)× (x′ ⋆M y′)] ∩ L×N M.

Since p is surejctive and the diagram is a pullback in Set, the projection π is also
surjective. We need to show that

x ⋆ y ⊂ π(π−1(x) ⋆ π−1(y))
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for all x, y ∈ L. To prove this, fix z ∈ x ⋆ y. By surjectivity of π, there exist
x′, y′ ∈M with (x, x′) ∈ π−1(x) and (y, y′) ∈ π−1(y). This means that f(x) = p(x′)
and f(y) = p(y′). From the fact that p is short, we obtain

f(x ⋆ y) ⊆ f(x) ⋆ f(y) = p(p−1(f(x)) ⋆ p−1(f(y))).

Since z ∈ x ⋆ y, there exist x′′, y′′ ∈ M such that p(x′′) = f(x), p(y′′) = f(y),
and f(z) ∈ p(x′′ ⋆ y′′), which in turn means that there exists z′ ∈ x′′ ⋆ y′′ with
f(z) = p(z′′). Thus we have (x, x′′), (y, y′′), (z, z′) ∈ L×N M with

(z, z′) ∈ [(x ⋆L y)× (x′′ ⋆M y′′)] ∩ L×N M = (x, x′′) ⋆ (y, y′′).

Then
z = π(z, z′) ∈ π((x, x′′) ⋆ (y, y′′)) ⊆ π(π−1(x) ⋆ π−1(y))

as desired. □

Now we consider normal monomorphisms and epimorphisms. Recall that if C is
a category with a zero object, then a normal epimorphism (resp., monomorphism)
is defined to be a coequalizer (resp., equalizer) between any morphism and a zero
morphism, or in other words, a cokernel (resp., kernel) of any morphism.

Theorem 3.16. In the category uHMag, the normal epimorphisms are the uniti-
zations, and the normal monomorphisms correspond to the absorptive strict unital
subhypermagmas.

Proof. To see that any unitization M ↠ ME is normal, first note that we may
assume without loss of generality that eM ∈ E. Consider E as a weak unital
subhypermagma of M by setting x ⋆E y = (x ⋆ y) ∩ E. Then it follows from the
universal property of the unitization that πE is the coequalizer of eM , iE : E →
M . Conversely, if f ∈ uHMag(L,M), then it is straightforward to see that the
coequalizer of f and the trivial morphism eM : L→M is the same as the unitization
πE : M →ME for E = f(L) ⊆M .

Next, for any g ∈ uHMag(M,N), the equalizer of g and eN is the inclusion
of the kernel i : K ↪→ M where K = f−1(eN ). From Remark 3.9(1) we see that
K is an absorptive strict unital subhypermagma. Conversely, if K ⊆ M is an
absorptive strict unital subhypermagma, then it follows from Lemma 3.10 that K
is the kernel of the unitization π : M → MK , so that the inclusion K ↪→ M is a
normal monomorphism. □

In Section 4 we will consider (co)limits in the category of mosaics. At that
point we will establish similar characterizations of the various epimorphisms and
monomorphisms in Msc and cMsc.

The previous theorem can also be viewed as a categorical characterization of
strict injective morphisms of hypermagmas. Given the importance of strict mor-
phisms in the literature on hypergroups and hyperrings, it seems natural to ask
whether there is a categorical characterization of strict morphisms in general. We
answer this question in Theorem 3.18 below.

Let C denote a category of hypermagmas, i.e. a category with a faithful forgetful
functor to HMag. We have the following functor

E : C → Set

M 7→ {(x, y, z) ∈M3 | z ∈ x ⋆ y}.
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If this functor happens to be representable, we let EC denote the representing object
in C.

Lemma 3.17. If C is any of the categories HMag, uHMag, Msc, or cMsc, then the
object EC defined above exists in C.

Proof. In each case we define the “freest” possible object E generated by elements
a, b, c ∈ E , subject to the condition

c ∈ a ⋆ b.

We will define the objects and omit the straightforward proofs that they represent
the corresponding functor.

If C = HMag, we take EC = {a, b, c} with hyperoperation

x ⋆ y =

{
c, x = a and y = b,

∅, otherwise.

If C = uHMag we take EC = {e, a, b, c} with the hyperoperation extending the
definition above so that e becomes an identity element. (In other words, it is the
unitization of EHMag at the empty set.)

In the case C = Msc, we define EC = {e, a±1, b±1, c±1} with the hyperoperation
such that e is an identity and whose products of nonidentity elements are given by
the following table:

⋆ a a−1 b b−1 c c−1

a ∅ e c ∅ ∅ ∅
a−1 e ∅ ∅ ∅ b ∅
b ∅ ∅ ∅ e ∅ a−1

b−1 ∅ c−1 e ∅ ∅ ∅
c ∅ ∅ ∅ a ∅ e
c−1 b−1 ∅ ∅ ∅ e ∅

In the case C = cMsc, we symmetrize the table above by setting EC = {0,±a,±b,±c}
and defining hyperaddition of nonzero elements by the table:

+ a −a b −b c −c
a ∅ 0 c ∅ ∅ −b
−a 0 ∅ ∅ −c b ∅
b c ∅ ∅ 0 ∅ −a
−b ∅ −c 0 ∅ a ∅
c ∅ b ∅ a ∅ 0
−c −b ∅ −a ∅ 0 ∅

The reader can verify from construction of each E = EC that

C(E ,M) ∼= {(x, y, z) ∈M3 | z ∈ x ⋆ y},
with idE corresponding to the universal element (a, b, c) ∈ E3. □

We have seen that the categories HMag and uHMag have free objects, and it will
be verified in Theorem 4.3 that the same is true for Msc and cMsc. In any of these
categories, let F2 = F ({a, b}) denote the free object on two elements a and b. The
inclusion {a, b} ⊆ EC then induces a morphism

ιC : F2 ↪→ EC ,
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which is injective for each choice of C above.
This leads to the following characterization of strict morphisms in terms of lift-

ing property, which we find reminiscent of various valuative criteria in algebraic
geometry.

Theorem 3.18. Let C denote any of the categories HMag, uHMag, Msc, or cMsc,
and retain the notation of F2, E := EC, and ι := ιC as above. Suppose that f : M →
N is a morphism in C. Then the following are equivalent:

(a) f is strict;
(b) Given any morphisms α ∈ C(F2,M) and β ∈ C(EC , N) satisfying f ◦ α =

β ◦ ιC, there exists there exists g ∈ C(EC ,M) such that

F2 M

E N

f

α

ιC

β

∃g

forms a commuting diagram;
(c) Every morphism from ιC to f in the arrow category [ML98, II.4] Arr(C) = C2

factors through the morphism

M M

M N

f

f

from idM to f .

Proof. (a) =⇒ (b): First assume that f is strict and that α and β are as in (b).
We must find g : E → M that makes the diagram commute. Write x := α(a) and
y := α(b). By the equality f ◦ α = β ◦ ι, we have f(x) = β(a) and f(y) = β(b). By
strictness of f ,

β(c) ∈ β(a) ⋆ β(b) = f(x) ⋆ f(y) = f(x ⋆ y).

Thus there exists z ∈ x ⋆ y such that β(c) = f(z). So we may define g : E → M
by setting g(a) = x, g(b) = y, and g(c) = z. Then g makes the diagram of (b)
commute, since:

g ◦ ι(a) = x = α(a), g ◦ ι(b) = y = α(b),

f ◦ g(a) = f(x) = β(a), f ◦ g(b) = f(y) = β(b), f ◦ g(c) = f(z) = β(c).

(b) =⇒ (a) Next, assume that f satisfies condition (b). We wish to verify
that f(x) ⋆f (y) ⊂ f(x ⋆ y) for all x, y ∈ M . To this end, fix z ∈ f(x) ⋆ f(y).
Let α : F2 → M be the morphism defined by α(a) = x and α(b) = y. Since
z ∈ f(x) ⋆ f(y), there exists a morphism β : E → N given by a 7→ f(x), b 7→ f(y),
and c 7→ z. Then we have f ◦ α = β ◦ ι. By hypothesis we obtain g : E → M
such that α = g ◦ ι and β = f ◦ g. These imply that x = g(a), y = g(b), and
z = β(c) = f ◦ g(c). But then

z = f(g(c)) ∈ f(g(a) ⋆ g(b)) = f(x ⋆ y)

as desired.
The equivalence (b) ⇐⇒ (c) is a formal reinterpretation. □
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Incidentally, the objects EC also serve to characterize short morphisms in terms
of the following lifting property.

Proposition 3.19. Suppose that C is any of the categories uHMag, Msc, or cMsc
with corresponding object E = EC as in Lemma 3.17. A morphism p : M → N in
C is short if and only if, for every morphism f ∈ C(E , N) there exists g ∈ C(E ,M)
such that f = p ◦ g, i.e. the map p∗ : C(E ,M) → C(E , N) is surjective.

Proof. The map p∗ corresponds to the following map on the representable functors:

{(u, v, w) ∈M3 | w ∈ u ⋆ v} ∼= C(E ,M) → C(E , N) ∼= {(x, y, z) ∈ N3 | z ∈ x ⋆ y},
(u, v, w) 7→ (p(u), p(v), p(w)).

If this function is surjective, note that p is surjective since, for any n ∈ N , we may
fix (x, y, z) = (e, n, n) which means that there exists w ∈M such that p(w) = n.

Then p is short if and only if it is surjective and, for every x, y ∈ N we have
x ⋆ y ⊆ p(p−1(x) ⋆ p−1(y)). The latter condition occurs if and only for all z ∈ x ⋆ y
there exist u ∈ p−1(x), w ∈ p−1(y), w ∈ p−1(z) such that w ∈ u ⋆ v. So p is short if
and only if it is surjective and the function above is surjective. But surjectivity of
p is implied by the surjectivity of the function above, so we deduce that p is short
if and only if the lifting property is satisfied. □

Note that the above characterization is readily extended to C = HMag if we
include the assumption that p is surjective.

3.3. Closed monoidal structures. Just as HMag has its limits and colimits cre-
ated by the forgetful functor U to Set, so we now describe a closed monoidal struc-
ture that is similarly created by U . For hypermagmas G and H, one can naively
endow the set of all morphisms from G to H with a hyperoperation in the following
way: for f, g ∈ HMag(G,H), define

f ⋆ g := {h ∈ HMag(G,H) | h(x) ∈ f(x) ⋆H g(x) for all x ∈ G}. (3.20)

Under the usual identification of the set of all functions f : G→ H with a Cartesian
power as

Set(G,H) = HG,

the hyperoperation of the product HG =
∏

x∈GH can be viewed as a hyperopera-
tion on the set of functions Set(G,H). Then (3.20) is simply the restriction of this
hyperoperation to the subset HMag(G,H) ⊆ Set(G,H).

Let X and Y be hypermagmas. We define X � Y to be the hypermagma whose
underlying set is X × Y , but whose hyperoperation is given by

(x� y) ⋆ (x′ � y′) =


x� (y ⋆ y′), x = x′ and y ̸= y′,

(x ⋆ x′) � y, x ̸= x′ and y = y′,

(x ⋆ x) � y ∪ x� (y ⋆ y), (x, y) = (x′, y′),

∅, otherwise.

Note that this hyperoperation is defined with the smallest possible products of
ordered pairs satisfying the properties

x� (y1 ⋆ y2) ⊆ x� y1 ⋆ x� y2, (3.21)

(x1 ⋆ x2) � y ⊆ x1 � y ⋆ x2 � y. (3.22)
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A routine case-by-case argument verifies that the assignment (X,Y ) 7→ X � Y
forms a bifunctor

− � − : HMag×HMag → HMag .

This bifunctor can be understood as a kind of tensor product in the sense of [Jag99,
Pop00] since it represents the best approximation to “bilinear maps” in this context.
We recall the following definition in the general context of concrete categories as
we will use it in several different categories.

Definition 3.23. Let (C, U) be a concrete category, i.e. a category with a faithful
functor U : C → Set. For objects X,Y, Z ∈ C, a function B : U(X)×U(Y ) → U(Z)
is a bimorphism if

• for all x ∈ X, the map B(x,−) : U(Y ) → U(Z) satisfies B(x,−) = U(fx)
for some fx ∈ C(Y, Z), and

• for all y ∈ Y , the map B(−, y) : U(X) → U(Z) satisfies B(−, y) = U(gy)
for some gy ∈ C(X,Z).

The set of all bimorphisms B : X × Y → Z will be denoted by Bim(X,Y ;Z) =
BimC(X,Y ;Z). Then we obtain a multifunctor

Bim(−,− ;−) : Cop × Cop × C → Set

in a straightforward way.

In all instances below, U will be the obvious forgetful functor and it will be
suppressed throughout.

Proposition 3.24. For hypermagmas X and Y , the hypermagma X�Y represents
the functor of bimorphisms Bim(X,Y ;−). That is, we have bijections

HMag(X � Y, Z) ∼= Bim(X,Y ;Z)

that are natural in all X,Y, Z ∈ HMag.

Proof. It follows from (3.21) and (3.22) that the identity function gives a bimor-
phism u : X × Y → X � Y . The pair (X � Y, u) is easily seen to be initial among
all pairs (Z,B) where Z is a hypermagma with a bimorphism B : X × Y → Z;
more precisely, it is initial in the category of elements el(Bim(X,Y ;−)). It fol-
lows [Rie16, Proposition 2.4.8] that u ∈ Bim(X,Y ;X � Y ) is the Yoneda element
corresponding to a natural isomorphism HMag(X � Y,−) ∼= Bim(X,Y ;−). □

We let 1∅ denote the terminal set 1 equipped with the empty hyperoperation: if
we denote its unique element by 1 (a slight abuse of notation), this hyperoperation
is given by 1 ⋆ 1 = ∅. Note that this is the free hypermagma on one element.

Theorem 3.25. The symmetric monoidal category (HMag,�, 1∅) is closed, with
internal hom given by [M,N ] := HMag(M,N) under the hyperoperation (3.20).

Proof. The fact that � and 1∅ induce a symmetric monoidal structure largely
follows from the fact that (Set,×, 1) is symmetric monoidal. One subtle point is
the fact that 1∅ forms a monoidal unit. If M is a hypermagma, we wish to verify
that the bijection 1∅�M →M given by 1�m 7→ m is an isomorphism, which is to
say that 1�m⋆ 1�m′ = 1� (m⋆m′) for all m,m′ ∈M . This follows immediately



CATEGORIES OF HYPERMAGMAS AND HYPERGROUPS 27

by construction as long as m ̸= m′. Fortunately in the case where m = m′, we also
have

1 �m ⋆ 1 �m = (1 ⋆ 1) �m ∪ 1 � (m ⋆m)

= ∅ �m ∪ 1 � (m ⋆m)

= 1 � (m ⋆m).

It remains to show that this symmetric monoidal category is closed with the
structure described in the statement. Fix hypermagmas X,Y, Z ∈ HMag, and
consider the natural bijection from the Cartesian closed structure of Set:

Set(X × Y,Z) Set(X,ZY )

HMag(X � Y, Z) HMag(X,HMag(Y,Z))

∼

∼

⊆ ⊆

Under this bijection, an element ϕ ∈ HMag(X � Y,Z) corresponds to the function

ϕ̂ : X → ZY ,

x 7→ ϕ(x� −).

Each map ϕ(x � −) : Y → Z is a morphism of hypermagmas thanks to (3.21).
Thus after corestriction we may view the function corresponding to ϕ as a mapping

ϕ̂ : X → HMag(Y,Z). It is a direct consequence of (3.22) that this ϕ̂ is a morphism

of hypermagmas, so that in fact ϕ̂ ∈ HMag(X,HMag(Y,Z)).
Thus (co)restriction of the Cartesian closed structure on Set induces the dashed

arrow in the diagram above. To see that it is bijective, fix ψ ∈ HMag(X,HMag(Y, Z))
whose action we denote by x 7→ ψx ∈ HMag(Y, Z). The reader can verify that the
function X × Y → Z given by (x, y) 7→ ψx(y) is a bimorphism. By Proposi-
tion 3.24 this corresponds to a morphism ψ0 ∈ HMag(X � Y,Z), which is readily

seen to satisfy ψ̂0 = ψ. Similarly, for ϕ ∈ HMag(X � Y, Z) one can verify that

(ϕ̂)0 = ϕ. So the dashed arrow above is bijective, and we obtain a natural isomor-
phism HMag(X � Y,Z) ∼= HMag(X,HMag(Y,Z)) as desired. □

Next we describe how the closed monoidal structure of HMag descends to a closed
monoidal structure on uHMag. Similar to the non-unital case, this structure can
be viewed as an enrichment of the closed monoidal structure (Set•,∧,2) of pointed
sets. We briefly recall that the monoidal product here is the wedge product (or
smash product) (X,x0) ∧ (Y, y0) which is the quotient of the product X × Y by
the equivalence relation (x, y0) ∼ (x0, y0) ∼ (x0, y) for all x ∈ X and y ∈ Y , and
that the internal hom is the set Set•((X,x0), (Y, y0)) with basepoint given by the
constant function y0. This monoidal structure has unit (2, 0), where 2 = {0, 1} is
the two-element set.

As in the non-unital case, the internal hom is easier to describe. Let M and N
be unital hypermagmas. We may (co)restrict the operation (3.20) to the subset
uHMag(M,N) ⊆ HMag(M,N) as follows: for f, g ∈ uHMag(M,N), define

f ⋆ g = {h ∈ uHMag(M,N) | h(x) ∈ f(x) ⋆ g(x) for all x ∈M}.
This is a hyperoperation on the set of unit-preserving morphisms. If e denotes the
identity element of N , it is then clear that the constant function e : M → N is an
identity for uHMag(M,N).
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To describe the symmetric monoidal structure, continue to let M and N denote
unital hypermagmas. Within the hypermagma M �N we fix the strict subhyper-
magma

E =M � eN ∪ eM �N ⊆M �N.

Then we defineM ∧N := (M�N)E to be the unitization relative to this subset. By
construction, this is a unital hypermagma with unit e = πE(E) = πE(eM � eN ) ∈
M ∧ N . The composite surjection

− ∧ − : M ×N M �N M ∧ N
−�− πE

is given by a bimorphism followed by a hypermagma morphism. Thus it a bimor-
phism of hypermagmas M ×N →M ∧ N . Furthermore, because

x ∧ eN = e = eM ∧ y

for all x ∈ M and y ∈ N , it follows that − ∧ − is in fact a bimorphism of unital
hypermagmas.

Next we verify that the underlying set of this object coincides with the smash
product of the pointed sets.

Lemma 3.26. The canonical map πE : M �N →M ∧ N satisfies

π−1
E (x ∧ y) =

{
E, x� y ∈ E,

x� y, x� y /∈ E.

In particular, the underlying pointed set of M ∧ N is given by the smash product
(M, eM ) ∧ (N, eN ).

Proof. Recall from the proof of Lemma 3.10 that the unitization with respect to
E is constructed as the quotient by the finest equivalence relation ∼ that contains
E × E and satisfies a certain condition. The claim therefore amounts to showing
that the particular equivalence relation

∼ = (E × E) ⊔∆(M�N)\E

satisfies the extra condition. The fact that E is a strict subhypermagma simplifies
this verification to the following: we may assume that u ∈ E and x ∈ (M �N) \E,
and we wish to prove that

y ∈ x ⋆ u ∪ u ⋆ x =⇒ y = x.

We must have x = x1 � x2 where x1 ̸= eM and x2 ̸= eN . Suppose first that u has
the form u = m� eN . Then if x ⋆ u is nonempty we have

x ⋆ u = (x1 � x2) ⋆ (m� eN ) ̸= ∅
=⇒ x1 = m (since x2 ̸= eN )

=⇒ (x1 � x2) ⋆ (m� eN ) = x1 � (x2 ⋆ eN ) = x1 � x2.

Thus y ∈ x ⋆ u implies y = x, and symmetrically y ∈ u ⋆ x implies y = x. A
similar argument holds if u is of the form u = eM � n, which completes the proof
as E =M ∧ eN ∪ eM ∧ N . □

In the following, we view the set 2 = {0, 1} as a unital hypermagma under the
hyperoperation ⋆ for which 0 is the identity and 1 ⋆ 1 = ∅. This is also the free
unital hypermagma on the singleton {1}.
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Theorem 3.27. For M,N ∈ uHMag, the unital hypermagma M ∧ N represents
the functor of bimorphisms

uHMag(M ∧ N,−) ∼= Bim(M,N ;−) : uHMag → Set .

The symmetric monoidal category (uHMag, ∧,2) is closed, with internal hom given
by [M,N ] := uHMag(M,N) under the hyperoperation inherited from (3.20).

Proof. The universal property of M ∧ N is proved following the same argument
as in Proposition 3.24, by showing that the canonical map M ×N → M ∧ N is a
bimorphism in uHMag. This makes it evident that we obtain a bifunctor

− ∧ − : uHMag× uHMag → uHMag .

The rest of the claim can be proved in the same manner as Theorem 3.25, with
only two significant adjustments described below.

First, note that the monoidal unit is now the unital hypermagma 2 described
above. For a unital hypermagma M , one can check that the isomorphism 2 ∧M ∼=
M of underlying pointed sets is in fact an isomorphism in uHMag. The computation
is similar, noting that the strict subhypermagma {1} ⊆ 2 is isomorphic to 1∅.

Second, the argument regarding the closed monoidal structure is proved using
the forgetful functor U : uHMag → Set• to pointed sets rather than sets. Let X, Y ,
and Z denote unital hypermamgas, which we view as pointed sets whose basepoint
is the identity (thereby suppressing the forgetful functor U in notation below).
Then the natural isomorphism

uHMag(X ∧ Y,Z) ∼= uHMag(X, uHMag(Y,Z))

can be deduced by (co)restriction from the closed monoidal structure on Set• via
the diagram

Set•(X ∧ Y,Z) Set•(X,Set•(Y,Z))

uHMag(X ∧ Y, Z) uHMag(X, uHMag(Y, Z))

∼

∼

⊆ ⊆

following an argument that is analogous to the one given in Theorem 3.25. □

Finally, we wish to remark that these closed monoidal structure restrict well to
the subcategories of commutative objects. Indeed, let cHMag and cuHMag respec-
tively denote the full subcategories of HMag and uHMag consisting of the commu-
tative (unital) hypermagmas. It is clear from the constructions ofM �N that ifM
and N are commutative, then the same is true forM�N , so that (cHMag,�, 1∅) is
a monidal subcategory of HMag. Furthermore, the definition of the operation (3.20)
is such that if N is commutative, then so is HMag(M,N). Similar remarks hold for
cuHMag if M and N are unital hypermagmas. Thus we immediately arrive at the
following.

Corollary 3.28. The full subcategories cHMag of HMag and cuHMag of uHMag
are both exponential ideals and closed under monoidal products in the respective
closed monoidal structures. Consequently, both (cHMag,�, 1∅) and (cuHMag, ∧,2)
are closed monoidal categories.
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By contrast, the formulas defining the hyperoperations ofM�N andM∧N is not
generally associative, so that HMon will not form a monoidal subcategory of uHMag.
Furthermore, Theorem 4.23 will provide an explicit example of hypergroups M
and N such that the unital hypermagma uHMag(M,N) = HGrp(M,N) is not
associative.

4. Categories of hypergroups and mosaics

In this final section, we consider categories of mosaics and hypergroups. One of
the lessons learned will be that while (canonical) hypergroups are attractive objects,
their categories are unfortunately less well-behaved than those of other structures.
The culprit in this situation is apparently the associative axiom, since the categories
of (commutative) mosiacs are quite nicely behaved. For this reason we argue that
the categories Msc and cMsc can be taken as “convenient” repacements for HGrp
and Can, respectively.

4.1. A convenient category of (canonical) hypergroups. In this subsection
we describe how many of the good properties of uHMag are also enjoyed by the full
subcategories Msc and cMsc. To begin, we note that the categories are complete
and cocomplete in the following way.

Theorem 4.1. The subcategories Msc and cMsc are closed under limits and colimits
in uHMag. Thus they are complete and cocomplete.

Proof. It suffices to prove that Msc is closed under (co)products and (co)equalizers.
Before doing so, we make the following general observation.

Recall from Lemma 2.4 that the inversion of a mosaic is an anti-isomorphism.
Let D : J → Msc be a diagram over a small index category J , and let D′ : J → Msc
be the diagram such that each D′(j) = D(j)op and which assigns the “opposite”
morphism to each morphism of j. Then the inversions ij : D(j) → D′(j) form
components of a natural isomorphism i : D → D′ of functors J → Msc ↪→ uHMag.
It follows that we obtain an induced anti-isomorphism of unital hypermagmas on
both the limit L = limJ D and colimit C = colimJ D of the diagram as computed
in uHMag.

Using this general construction of inverses, it is easy to verify that any small
product or coproduct of (commutative) mosaics in uHMag is again a (commuta-
tive) mosaic, and that the equalizer of a pair of morphisms between (commutative)
mosaics is again such. Finally, consider a coequalizer in uHMag of the form

M N L
f

g

π

where M and N are reversible. By the discussion above we obtain an inversion
i : L → L satisfying i(π(x)) = π(x−1). Assume that x, y, z ∈ L satisfy x ∈ y ⋆ z.
Recall from the proof of Theorem 3.11 that π is short, so that

x ∈ y ⋆ z = π(π−1(y) ⋆ π−1(z))

Thus there are x′, y′, z′ ∈ N such that x = π(x′), y = π(y′), z = π(z′) and
x′ ∈ y′ ⋆ z′. By reversibility of N we have y′ ∈ x′ ⋆ (z′)−1 and z′ ∈ (y′)−1 ⋆ x′.
Applying π, we obtain

y = π(y′) ∈ π(x′ ⋆ (z′)−1) ⊆ π(x′) ⋆ π((z′)−1) = x ⋆ i(z),

z = π(z′) ∈ π((y′)−1 ⋆ x′) ⊆ π((y′)−1) ⋆ π(x′) = i(y) ⋆ x.
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Therefore L is reversible. (Finally, if N is commutative then so is L thanks to
Lemma 2.13(1).) □

We see immediately that the characterizations of various epimorphisms and
monomorphisms as well as the property of regularity easily pass from unital hyper-
magmas to (commutative) mosaics.

Corollary 4.2. In the categories Msc and cMsc,

• The monomorphisms and epimorphisms are the injective and surjective
morphisms, respectively;

• The regular monomorphisms and regular epimorphisms are the coshort and
short morphisms, respectively;

• The normal monomorphisms and normal epimorphisms correspond to the
strict submosaics and unitizations, respectively.

Furthermore, these categories are both regular.

Proof. The properties of being an ordinary, regular, or normal monomorphism
(resp., epimorphism) are all characterized in terms of a limit (resp., colimit). Then
thanks to Theorem 4.1, a morphism in Msc or cMsc satisfies any one of these prop-
erties in Msc or cMsc if and only if it satisfies the corresponding property in uHMag.
Thus the characterizations of all morphisms above, with the exception of normal
monomorphisms, follow directly from Proposition 3.13, Theorem 3.14, and Theo-
rem 3.16. The fact that normal monomorphisms correspond to strict submosaics
follows from Theorem 3.16, Remark 3.9(5), and the fact that the kernel of any
morphism of mosaics is a strict submosaic of the domain.

Finally, because regular categories are wholly characterized in terms of certain
finite limits and colimits, the subcategories Msc and cMsc inherit the property of
reguarity from uHMag (Corollary 3.15). □

Next we show that free objects exist inMsc, and that they are even commutative.

Theorem 4.3. The forgetful functor U : Msc → Set has a left adjoint.

Proof. Let X be a set. Let F (X) = (X×{0, 1})⊔{0}, equipped with the involution
− : F (X) → F (X) that fixes zero and interchanges (x, 0) with (x, 0) for all x ∈ X.
Thus if we identify X with X × {0}, we may view F (X) = X ⊔ −X ⊔ {0}.

Define a hyperaddition on F (X) \ {0} by

a+ b =

{
0 if a = −b,
∅ otherwise

and extend it to F (X) by setting 0 to be an additive identity. Then it is straight-
forward to verify that F (X) is an object of cMsc, that this construction gives a
functor F : Set → cMsc ⊆ Msc, and that we obtain natural bijections

Set(X,U(M)) ∼= Msc(F (X),M)

for all X ∈ Set and M ∈ Msc. □

The additive structure of the Krasner hyperfield (Example 2.19) plays the fol-
lowing special role in the category of mosaics.
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Proposition 4.4. The functor Substr : Mscop → Set of strict submosaics is repre-
sentable by the Krasner hyperfield:

Substr ∼= Msc(−,K).

Proof. Let G be a mosaic. Certainly if ϕ ∈ Msc(G,K) then N = ϕ−1(0) ⊆ G is a
strict submosaic. Conversely, suppose that N ⊆ G is a strict submosaic. Define a
function ϕ = ϕN : G→ K by

ϕ(x) =

{
0, x ∈ N,

1, x /∈ N.

We claim that ϕ is a morphism of mosaics. Clearly ϕ preserves the unit. Given
x, y ∈ G, we wish to show that

ϕ(x ⋆ y) ⊆ ϕ(x) + ϕ(y).

If x, y ∈ N then

ϕ(x ⋆ y) ⊆ ϕ(N) = 0 = 0 + 0 = ϕ(x) + ϕ(y),

and if x, y /∈ N then

ϕ(x ⋆ y) ⊆ {0, 1} = 1 + 1 = ϕ(x) + ϕ(y).

So assume that x ∈ N and y /∈ N . It suffices to show show that x ⋆ y ⊆ G \N , for
then it will follow that

ϕ(x ⋆ y) ⊆ ϕ(G \N) = 1 = 0 + 1 = ϕ(x) + ϕ(y).

So let z ∈ x ⋆ y, and assume toward a contradiction that z ∈ N . Then reversibility
implies that y ∈ x−1 ⋆ z ∈ N , which is a contradiction. A symmetric argument
applies if x /∈ N and y ∈ N .

Thus we have a bijection

Substr(G) ∼= Msc(G,K),

N 7→ ϕN ,

which is evidently natural in G. Thus K (with its zero submosaic) represents
Substr. □

Next we describe a closed monoidal structure on the category of commutative
mosaics, reminiscent to that of the category (Ab,⊗,Z) of abelian groups. First note
that the internal hom of uHMag naturally induces an internal hom on cMsc, the
hyperoperation on f, g ∈ cMsc(M,N) by

f + g = {h ∈ cMsc(M,N) | h(x) ∈ f(x) + g(x) for all x ∈M}. (4.5)

While we know this has identity given by the constant zero morphism, one can
readily verify that it is also reversible: the unique inverse of f is the morphism
−f : M → N given by (−f)(x) = −f(x) for x ∈M .

Now we turn to the construction of the corresponding monoidal structure. For
any object M ∈ cMsc, the negation map −1: M → M given by m 7→ −m is
a morphism (thanks to commutativity and uniqueness of inverses). Thus for two
objectsM,N ∈ cMsc we may form the endomorphism (−1)∧(−1) ofM ∧N . We let
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M ⊠N denote the coequalizer of the endomorphisms i++ := idM ∧ idN = idM∧N

and i−− = (−1) ∧ (−1) in uHMag:

M ∧ N M ∧ N M ⊠N
i++

i−−
(4.6)

Thus the underlying set of M ⊠ N is the quotient of M ∧ N by the equivalence
relation x∧y ∼ (−x)∧ (−y) (where x ∈M , y ∈ N), which is equivalently described
by (−x) ∧ y ∼ x ∧ (−y). Thus we may define an involution on M ⊠N by setting

−m⊠ n := (−m)⊠ n = m⊠ (−n).

This provides an inverse for each element:

0 = 0⊠ n ∈ (−m+m)⊠ n = −m⊠ n+m⊠ n.

By construction, there is a bijection

M ⊠N ∼= (M ∧N)/(Z/2Z), (4.7)

where the group Z/2Z acts on the pointed set M ∧ N by m ∧ n 7→ (−m) ∧ (−n).
In particular, we immediately see the following nondegeneracy condition of this
“tensor product” that behaves more like the case of vector spaces than the case of
abelian groups:

x ∈M \ {0}, y ∈ N \ {0} =⇒ x ∧ y ̸= 0.

Lemma 4.8. If M and N are commutative mosaics, then M ⊠ N is also a com-
mutative mosaic.

Proof. By construction M ⊠N is a commutative unital hypermagma with inverses
as described above. Thus it only remains to check reversibility. Before doing so,
consider that the surjective morphisms of hypermagmas

M �N ↠M ∧ N ↠M ⊠N

are both short, so that the composite surjection π : M �N ↠M ⊠N is also short.
To verify reversibility, suppose that w1, w2, w3 ∈M ⊠N are elements such that

w1 ∈ w2 + w3 = π(π−1(w2) + π−1(w3)).

This means that there exist w′
i = xi � yi ∈M �N such that each π(w′

i) = wi and

x1 � y1 ∈ (x2 � y2) + (x3 � y3)

Recalling the structure of M �N described above, we must have either x2 = x3 or
y2 = y3 for the sum on the right-hand-side to be nonempty. We may separate the
argument into one of a few cases.

First suppose that x2 = x3 =: x but y2 ̸= y3. Then by reversibility of N we have

x1 � y1 ∈ x� (y2 + y3) =⇒ x1 = x and y1 ∈ y2 + y3

=⇒ y3 ∈ y1 − y2

=⇒ x� y3 ∈ x� y1 + x� (−y2).

Applying π, we then deduce that w3 ∈ w1 − w2. A similar argument yields the
same conclusion in the case where x2 ̸= x3 and y2 = y3.

Finally, suppose that x2 = x3 =: x and y2 = y3 =: y. Then we have

x1 � y1 ∈ (x� y) + (x� y) = (x+ x) � y ∪ x� (y + y).
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Thus we either have x1 = x and y1 ∈ y + y, or we have x1 ∈ x+ x and y1 ∈ y + y.
In the first case, reversibility gives y ∈ y1 − y, so that

x� y ∈ x� (y1 − y) = x1 � y1 + x� (−y).

Applying π thus implies that w3 ∈ w2 −w1. A similar argument in the second case
derives the same conclusion.

Thus by exhaustion of all cases we conclude thatM ⊠N is in fact reversible. □

Theorem 4.9. For commutative mosaics M and N , the object M ⊠ N ∈ cMsc
represents the functor of bimorphisms:

cMsc(M ⊠N,−) ∼= BimcMsc(M,N ;−) : cMsc → Set .

Proof. Suppose that L is another object in cMsc. Since cMsc is a full subcategory
of uHMag, a function M ×N → L is a bimorphism in uHMag if and only if it is a
bimorphism in cMsc. Theorem 3.27 gives a natural isomorphism

uHMag(M ∧ N,L) ∼= BimuHMag(M,N ;L) = BimcMsc(M,N ;L). (4.10)

But also because any bimorphism B : M ×N → L satisfies

B(−m,n) = −B(m,n) = B(m,−n),

it follows that any morphism f : M ∧ N → L satisfies

f((−m) ∧ n) = f(m ∧ (−n)) = −f(m ∧ n).

Thus f coequalizes the endomorphisms i++ and i−− of M ∧ N described above,
so that it factors uniquely via a morphism out of the coequalizer f : M ⊠N → L.
Thus f 7→ f provides a natural bijection

uHMag(M ∧ N,L) ∼= cMsc(M ⊠N,L),

which combines with (4.10) to yield the desired representability. □

Recall from Theorem 4.3 that free objects exist in Msc and that they are com-
mutative, so that they also form free objects in cMsc. Let F = {1, 0,−1} denote the
free object of cMsc generated by the single element 1, so that 1 + 1 = −1− 1 = ∅
and 1− 1 = 0.

Theorem 4.11. The symmetric monoidal category (cMsc,⊠,F) is closed, with
internal hom given by [M,N ] := cMsc(M,N) under the hyperoperation (4.5).

Proof. Fix objects M,N,L ∈ cMsc. We claim that there is a natural bijection
between morphisms M → cMsc(N,L) and bimorphisms M × N → L. From this
and Theorem 4.9 will follow the adjunction

cMsc(M ⊠N,L) ∼= BimcMsc(M,N ;L) ∼= cMsc(M, cMsc(N,L)).

Certainly every bimorphismB : M×N → L determines a morphismM → cMsc(N,L)
given by m 7→ B(M,−). Conversely, suppose that

ϕ : M → cMsc(N,L)

m 7→ ϕm
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is a morphism of mosaics. We obtain a function B : M × N → L by setting
B(m,n) = ϕm(n). This is a bimorphism because we have

ϕm+m′(n) ⊆ ϕm(n) + ϕm′(n),

ϕm(n+ n′) ⊆ ϕm(n) + ϕm(n′),

ϕm(0) = 0 = ϕ0(n)

for all m,m′ ∈ M and n, n′ ∈ N . These assignments are readily verified to be
mutually inverse and natural inM , N , and L, so that the adjunction is established.

It remains to show that F is a monoidal unit. For any commutative mosaic M ,
we have a bimorphism F×M →M given by (±1,m) 7→ ±m and (0,m) 7→ m. This
uniquely determines a morphism F⊠M →M , which one can verify is a bijection.
One can check that the inverse assignment M → F⊠M given by m 7→ 1⊠m is in
fact a morphism, with the only subtle observation here is the case

1⊠m+ 1⊠m = (1 + 1)⊠m ∪ 1⊠ (m+m)

= ∅ ∪ 1⊠ (m+m)

= 1⊠ (m+m).

This gives F⊠M ∼=M naturally in M . □

Example 4.12. Suppose that G and H are abelian groups, with (ordinary) tensor
product G⊗H = G⊗ZH. Because the canonical map G×H → G⊗H is bilinear,
it is also a bimorphism of mosiaics. Thus it induces a morphism of mosaics

G⊠H → G⊗H,

g ⊠ h 7→ g ⊗ h.

The image of this morphism lies in the weak submosaic consisting of the pure
tensors in G ⊗ H. However, this morphism need not be injective: the underlying
set of G⊠H is in bijection with (G∧H)/(Z/2Z) as in (4.7), while one can certainly
choose abelian groups such that G⊗H = 0.

Remark 4.13. In principle, the construction of the object M ⊠ N should carry
through even if we do not assume that the mosaics are commutative. Extra care
is required in the definition of the object in this case: one should instead take the
quotient of the unital hypermagma M ∧ N by the equivalence relation generated
by x ∧ y−1 ∼ x−1 ∧ y for all x ∧ y ∈ M ∧ N . However, it seems more difficult
to identify the underlying set of this quotient. In particular, there is no reason to
expect that x ∈M \{e} and y ∈ N \{e} would still imply x⊠y ̸= e. Because of this
extra complication, and because our motivation was to mimic the tensor product
of abelian groups, we have chosen to focus only on the commutative case here.

The closed monoidal structure on cMsc allows for a new view of hyperrings
and, more generally, multirings. We recall from [Vir10, Section 4] that a multiring
(R,+, 0, ·, 1) is a set R equipped with the structures of a canonical hypergroup
(R,+, 0) and a monoid (R, ·, 1) subject to the condition that 0 ·R = 0 = R ·0 along
with the following “subdistributive” property: for all a, b, c ∈ R,

a(b+ c) ⊆ ab+ ac and (b+ c)a ⊆ ba+ ca. (4.14)

A multiring R is a hyperring if it satisfies the “strict” form of distributivity: for all
a, b, c ∈ R,

a(b+ c) = ab+ ac and (b+ c)a = ba+ ca. (4.15)
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A morphism of multirings is a function that is both a morphism the canonical
hypergroup structure and the multiplicative monoid structure. We letMRing denote
the category of multirings with these morphisms, and we let HRing denote the full
subcategory whose objects are the hyperrings.

It is well known that the category of rings can be equivalently viewed as the
category of monoid objects [ML98, VII.3] in (Ab,⊗,Z). The following shows that
multirings enjoy a similar description. If C is a monoidal category (whose monoidal
structure is understood from context), we let Mon(C) denote the corresponding
category of monoid objects in C.

Theorem 4.16. The category of multirings has a fully faithful embedding

MRing ↪→ Mon(cMsc)

whose image is the full subcategory of objects with underlying additive mosaic being
associative (i.e., a canonical hypergroup).

Proof. Given a multiring (R,+, 0, ∗R, 1), we define a monoid object (R,m, η) of
(cMsc,⊠,F) as follows. Because the monoidal unit F = {0, 1,−1} of cMsc is freely
generated by 1, there is a unique morphism of mosaics ηR : F → R determined by
1 7→ 1. The zero and subdistributive (4.14) properties of multiplication in R imply
that it is a bimorphism in cMsc. By the universal property of Theorem 4.9 it factors
uniquely as

R×R R

R⊠R

∗R

mR

wheremR is a morphism of mosaics. Associativity of ∗R readily implies associativity
of mR, and the identity property of 1 ∈ R similarly implies that ηR is a unit for
mR. Thus (R,mR, ηR) is indeed an object of Mon(cMsc).

Using the universal properties of ⊠ and F, it is straightforward to verify that the
assignment above forms a functor from multirings to monoid objects in cMsc, which
acts identically on morphisms. The fact that this is fully faithful amounts to the
following observation for any multirings R and S: for a morphism f ∈ Can(R,S) =
cMsc(R,S),

f ◦ ∗R = ∗S ◦ (f × f) ⇐⇒ f ◦mR = mS ◦ (f ⊠ f).

Finally, an object (R,m, η) of Mon(cMsc) is in the essential image of this functor
if and only if its underlying additive mosaic is a hypergroup, which happens if and
only if the addition is associative by Lemma 2.6. □

As hyperrings form a full subcategory HRing ⊆ MRing of multirings, the functor
above restricts to a fully faithful embedding

HRing ↪→ Mon(cMsc)

as well. The following indicates how to describe the essential image of HRing under
the functor.

Remark 4.17. Let R be a multiring, viewed as a monoid (R,m, η) in cMsc. Under
the adjunction R⊠− ⊣ cMsc(R,−), the multiplication m : R⊠R→ R corresponds
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to the “left multiplication” morphism

λ : R→ cMsc(R,R),

r 7→ λr,

where λr(x) = rx for all x ∈ R. Similarly, the adjunction − ⊠ R ⊣ cMsc(R,−)
turns m into the “right multiplication” morphism ρ : R → cMsc(R,R). Then R is
a hyperring if and only if strict distributivity (4.15) holds on both the left and the
right, if and only if the morphisms λ and ρ have their image in the set of strict
morphisms

λ, ρ : R→ cMscstr(R,R) ⊆ cMsc(R,R).

To close this subsection, we describe an alternative way to characterize which
objects of uHMag are mosaics. Recalling the representing objects of Lemma 3.17,
let us denote

E = EuHMag = {e, a, b, c},
Er = EMsc = {e, a±1, b±1, c±1},

which are both generated by elements a, b, and c satisfying c ∈ a ⋆ b. There is a
naturally induced injective morphism

ι : E ↪→ Er
that acts identically on the generating objects a, b, c ∈ E .

Proposition 4.18. Let M be a unital hypermagma and let ι : E ↪→ Er be as above.
Then M is reversible (i.e., a mosaic) if and only if, for every morphism f : E →M
there exists a unique morphism g : Er → M such that f = g ◦ ι (that is, the map
ι∗ : uHMag(Er,M) → uHMag(E ,M) is bijective).

Proof. First assume that M is reversible, and let f : E → M be a morphism of
uHMag. Then we have f(c) ∈ f(a) ⋆ f(b). By reversiblity, we obtain f(b) ∈
f(a)−1 ⋆f(c) and f(a) ∈ f(c)⋆f(b)−1. One can check that there exists a morphism
g ∈ uHMag(Er,M) defined by g(x±1) = f(x)±1 for x = a, b, c (here we omit ι for
notational convenience). Since Er and M are both reversible, inverses are unique
and this condition determines g uniquely.

Conversely, assume that M satisfies bijectivity of ι∗. To study uHMag(Er,M),
it will be useful to note that the nontrivial products in Er are exactly

c = a ⋆ b, b = a−1 ⋆ c, a = c ⋆ b−1,

c−1 = b−1 ⋆ a−1, b−1 = c−1 ⋆ a, a−1 = b ⋆ c−1.

We will first prove that every element of M has a unique inverse. For existence,
from x ∈ e ⋆ x we obtain a morphism f : E →M by f(a) = e and f(b) = f(c) = x,
which extends to g : Er →M by surjectivity of ι∗. Since b is inverse to b−1 in Er, it
follows that x = f(b) is inverse to x1 = f(b−1) in M . For uniqueness, suppose that
x2 ∈M is also an inverse of x inM . Then we can construct morphisms gi : Er →M
for i = 1, 2 by setting

gi(a) = gi(a
−1) = e, gi(b) = gi(c) = x, gi(b

−1) = gi(c
−1) = xi.

Since these agree on a, b, c ∈ Er, they satisfy g1 ◦ ι = g2 ◦ ι. From injectivity of ι∗

we conclude that g1 = g2 and thus x1 = x2.



38 SO NAKAMURA AND MANUEL L. REYES

Finally we verify reversibility. Suppose that x, y, z ∈ M satisfy x ∈ y ⋆ z. Then
there is a morphism f : E → M such that f(a) = y, f(b) = z, f(c) = x. By
assumption this extends to a morphism g : Er → M , such that g(t) = f(t) for
t = a, b, c (here we suppress the notation of ι). Again g maps inverses to inverses,
so by uniqueness of inverses in M we have g(t−1) = f(t)−1 for t = a, b, c. Since
b = a−1 ⋆ c and a = c ⋆ b−1 in Er, we have

z = g(b) ∈ g(a−1) ⋆ g(c) = y−1 ⋆ x,

y = g(a) ∈ g(c) ⋆ g(b−1) = x ⋆ z−1.

This completes the proof. □

4.2. The category of (canonical) hypergroups. We now discuss the categories
of hypergroups and canonical hypergroups. The difficult lesson to be learned below
is that while the objects of these categories are attractive from the algebraic point
of view, the categories themselves are not so well-behaved.

Theorem 4.19. The categories HGrp and Can are closed under products and co-
equalizers in uHMag.

Proof. Closure under products is straightforward: if (Gi)i∈I are hypergroups, then
the unital hypermagma

∏
Gi is readily seen to be associative and reversible by a

componentwise verification. If the Gi are all commutative, then so is their product.
To see that HGrp is closed under coequalizers, suppose that f, g ∈ HGrp(G,H)

and that p ∈ uHMag(H,K) is their coequalizer. We know that K is a mosaic
by Theorem 4.1, so according to Lemma 2.6 we only need to verify that K is
associative. But p is short by Theorem 3.14 and H is associative, so it follows from
Lemma 2.13(2) that K is associative. □

Unfortunately, (canonical) hypergroups do not have all binary coproducts, as
shown in the following example. Recall that K = {0, 1} denotes the Krasner
hyperfield, whose additive structure is determined by 1 + 1 = {0, 1}. Below we
let Z2 = Z/2Z denote the (additive) cyclic group of order two.

Proposition 4.20. The coproduct Z/2Z
∐

Z/2Z does not exist in HGrp or Can.

Proof. We give the proof within the category Can, with the case of HGrp being
very similar since Z2 and K are objects in the full subcategory Can. Assume for
contradiction that the coproduct G = Z2

∐
Z2 exists in Can. Let τ : Z2 → K be

the morphism of hypergroups (even hyperfields) that acts as the identity on the
underlying set, and note that Can(Z2,K) = {τ, 0}. Then

Can(Z2

∐
Z2,K) ∼= Can(Z2,K)× Can(Z2,K).

has four elements, given by 0 = 0
∐

0, τ1 = τ
∐

0, τ2 = 0
∐
τ2, and τ12 = τ

∐
τ .

Proposition 4.4 implies

Substr(G) ∼= Can(G,K),

so that G has four strict subhypergroups. Two of these are given by G = ker 0
and 0 = ker τ12, and the proper nontrivial subgroups are ker τi for i = 1, 2. Let
x = i1(1) and y = i2(1) denote the image of 1 ∈ Z2 under the two structure maps
i1, i2 : Z2 → G. Then we have

x /∈ ker τ1, x ∈ ker τ2, y ∈ ker τ1, y /∈ ker τ2.
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As a consequence, the four subgroups of G are uniquely determined by their inter-
section with {x, y}.

Let ϕ = idZ2

∐
idZ2 : G→ Z2. Because kerϕ contains neither x nor y, it follows

that kerϕ = 0. On the other hand,

ϕ(x+ y) ⊆ ϕ(x) + ϕ(y) = 1 + 1 = 0

So x + y ⊆ kerϕ, which implies that x + y = 0. It follows that y = −x, so that x
and y are contained in the same strict subhypergroups of G. But this contradicts,
for instance, the claim above that x /∈ ker τ1 while y = −x ∈ ker τ1. □

Next we present an example to show that Can does not have all equalizers. Let
Fq denote the field with q elements, considered as an abelian group under addition.
Below we consider the quotient F9/F×

3 hyperfield as in [Kra83], whose underlying
canonical hypergroup is of the form described in Example 2.17.

Proposition 4.21. Consider the quotient hypergroup H = F9/F×
3 , and let F : H →

H be the morphism induced by the Frobenius automorphism x 7→ x3 on F9. Then
there is no equalizer of the morphisms

H H
idH

F

in the category HGrp or Can.

Proof. Let α ∈ F×
9 be a generator of the multiplicative group of the field with nine

elements. Then the elements of the quotient hyperfield H are of the form [0] and
[αi] = [α]i for i = 0, . . . , 3.

As before we write the proof in the case of Can, while the proof for HGrp is
essentially identical. Assume for contradiction that the equalizer e : E → H exists
in Can. Notice that H is in fact a quotient hyperfield of F9 and an extension
hyperfield of the Krasner hyperfield K; see [CC11]. By construction as the equalizer
of the identity and Frobenius maps, every element β of the image of e must satisfy
β3 = β under the hyperfield multiplicative structure.

On the other hand, consider the two morphisms f, g : K → H given by f(1) = [1]
and g(1) = [α2]. Then f and g both equalize idH and F (since α2 is identified with
(α2)3 = −α2 in H), so that they factor through e. In particular, there exist
x, y ∈ E such that e(x) = [1] and e(y) = [α2]. By the assumption that E is a
canonical hypergroup, we have x+ y ̸= ∅. Fixing any z ∈ x+ y, we find that

e(z) ∈ e(x+ y) ⊆ e(x) + e(y) = [1] + [α2] = {[α], [α3]}.

However, this contradicts the requirement that e(z) = e(z)3 described above. Thus
the equalizer E does not exist. □

Now we will show that Can is not closed under formation of the internal hom
of cMsc ⊆ uHMag. This will rely on the observation that within the category Can,
the (hyper)group Z2 represents the following functor

Can(Z2, G) ∼= {x ∈ G | 0 ∈ x+ x}, (4.22)

where f ∈ Can(Z2, G) corresponds to the element x = f(1) ∈ G. Under this
bijection, a sum of morphisms f + g corresponds to the set {x ∈ f(1) + g(1) | 0 ∈
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x+ x}. Thus to show that there exist f, g ∈ Can(Z2, G) with f + g = ∅, it suffices
to find elements x, y ∈M such that

0 ∈ x+ x, 0 ∈ y + y, but 0 /∈ z + z for all z ∈ x+ y.

To realize this strategy, consider the following commutative ring given by gener-
ators and relations:

R = Z[x, y, z | 2x = y(z + 1) = 0, z2 = 1]

Within this ring, G = {1, z} forms a multiplicative group of order two. We may
then form the quotient hyperring R/G as in [CC11], which has hyperaddition given
by

[f ] + [g] = {[h] | h ∈ fG+ gG}
= {[f + g], [fz + g], [f + gz], [fz + gz]}
= {[f + g], [fz + g]}.

Theorem 4.23. Let f, g ∈ Can(Z2, R/G) be the morphisms given by f(1) = [x]
and g(1) = [y]. Then f+g = ∅; in particular, the commutative unital hypermagma
Can(Z2, R/G) is not a hypergroup.

Proof. Because 0 = y(z + 1) = yz + y ∈ yG + yG, we have [0] ∈ [y] + [y]; an even
easier argument gives [0] ∈ [x] + [x]. Thus the formulas given for f and g indeed
describe morphisms in Can(Z2, R/G).

As described via (4.22), to see that f + g = ∅ in Can(Z2, R/G) it is enough to
verify that for all [w] ∈ [x] + [y], we have 0 /∈ [w] + [w]. By construction of the
quotient hyperring R/G we have

[x] + [y] = {[x+ y], [xz + y]}.

We verify that

[x+ y] + [x+ y] = {[x+ y + x+ y], [(x+ y)z + x+ y]}
= {[2y], [x(z + 1)]},

[xz + y] + [xz + y] = {[xz + y + xz + y], [xz + y + (xz + y)z]}
= {[2y], [x(z + 1)]}.

It is straightforward to check that 2y, x(z + 1) ̸= 0 in R, so that [0] /∈ [w] + [w] for
both values of [w] ∈ [x] + [y]. This completes the proof. □

Thus canonical hypergroups do not naturally inherit a closed monoidal structure
in the way that commutative mosaics do. Yet there is even stronger evidence for the
lack of a “tensor product” structure on Can, in the form of the following example
which forbids the existence of monoidal products that represent bimorphisms.

Theorem 4.24. Let V = Z/2Z × Z/2Z denote the Klein four-group. Then the
functor of bimorphisms

BimCan(V, V ;−) : Can → Set

is not representable.

Proof. We denote the nonzero elements of this group by V \{0} = {a1, a2, a3}. Fix a
canonical hypergroupM , and suppose thatB : V×V →M is a bimorphism. Denote
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the elements xij := B(ai, aj) ∈ M , which form a matrix (xij)
3
i,j=1. Applying

B(−, aj) to a1 = a2 + a3 and ai + ai = 0 gives

x1j ∈ x2j + x3j and 0 ∈ xij + xij .

Similarly, applying B(−, aj) to the equations aσ(1)j = aσ(2)j + aσ(3)j for all permu-
tations σ of {1, 2, 3} yields permuted relations xσ(1)j ∈ xσ(2)j + xσ(3)j . However,
these automatically follow from the original relation (where σ is the identity) and
xij = −xij . Applying similar reasoning with the morphisms B(ai,−), we find that
there is a natural isomorphism

Bim(V, V ;M) ∼= {(xij)3i,j=1 | xij ∈M satisfy xij = −xij ,
x1j ∈ x2j + x3j , and xi1 ∈ xi2 + xi3}. (4.25)

given by the assignment B 7→ (B(ai, aj))i,j .
Assume toward a contradiction that Bim(V, V ;−) is represented by a canonical

hypergroup V ⊗V . Let ai⊗aj ∈ V ⊗V denote the image of (ai, aj) ∈ V ×V under
the bimorphism given by the Yoneda element

idV⊗V ∈ Can(V ⊗ V, V ⊗ V ) ∼= Bim(V × V ;V ⊗ V ).

Because a bimorphism V × V → M is determined by its values on the (ai, aj) ∈
V × V , one can deduce that a morphism V ⊗ V → M is uniquely determined by
the images of the ai ⊗ aj ∈ V ⊗ V .

By Proposition 4.4 we have a bijection

Substr(V ⊗ V ) ∼= Can(V ⊗ V,K),

where the set on the right is in turn described by matrices as in (4.25). One such

matrix is
(

0 0 0
0 1 1
0 1 1

)
, which corresponds to a morphism whose kernel contains a1 ⊗ a1

but not a2 ⊗ a3. In particular, we deduce that

a1 ⊗ a1 ̸= a2 ⊗ a3.

Furthermore, there is a unique such matrix with no nonzero entries, namely
(

1 1 1
1 1 1
1 1 1

)
.

Because this matrix corresponds to the zero subhypergroup of V ⊗ V , we find that
zero is the only strict subhypergroup that if none of the ai ⊗ aj are in the kernel of
a morphism from V ⊗ V , then the kernel of that morphism must be zero.

Finally, consider the morphism ϕ : V ⊗ V → V that corresponds to the matrix(
a1 a2 a3
a2 a3 a1
a3 a1 a2

)
which satisfies (4.25). Since none of the ai ⊗ aj are in the kernel of ϕ, it

follows as above that its kernel is zero. Then because

ϕ(a1 ⊗ a1 − a2 ⊗ a3) ⊆ ϕ(a1 ⊗ a1)− ϕ(a2 ⊗ a3) = a1 − a1 = 0,

we must have a1 ⊗ a1 − a2 ⊗ a3 = {0}. By uniqueness of inverses in canonical
hypergroups, we derive the contradiction a1 ⊗ a1 = a2 ⊗ a3. □

4.3. Matroids as mosaics. We now show how matroids are able to provide ex-
amples of mosaics that are not necessarily associative, and thus need not be hyper-
groups. This construction works for infinite matroids. It was shown in [BDK+13]
that various axiom systems for infinite matroids are equivalent if one includes a
certain maximality condition, which is automatically satisfied for finitary matroids.
For our purposes it will be most convenient to work with the definition via closure
operators, but as the maximality condition does not seem to be relevant to the
construction of this functor we do not include it. While we do not make use of
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bases or rank below, we mention that the notions of finite independent sets and
finite rank still behave well in this setting [FF00, Chapter 4].

A closure operator [FF00, Section 3.1] on a set M is a map C : P(M) → P(M)
that is

• extensive: S ⊆ C(S),
• monotone: S ⊆ T =⇒ C(S) ⊆ C(T ), and
• idempotent: C(C(S)) = C(S),

where S, T ⊆ M are arbitrary subsets. A subset S of M is closed (with respect
to C) if C(S) = S. A closure space (X,C) is a set X with a closure operator
C = CX on X. We define the category Clos of closure spaces to have morphisms
f : (X,CX) → (Y,CY ) given by functions f : X → Y satisfying

f(CX(S)) ⊆ CY (f(S))

for all S ⊆ X, or equivalently, if the preimage of every closed subset of Y under f
is again closed in X.

A matroid is closure space M whose closure operator C satisfies the exchange
property : for x, y ∈M and S ⊆M ,

x /∈ C(S) and x ∈ C(S ∪ y) =⇒ y ∈ C(S ∪ x).

Closed subsets of a matroid M are also called subspaces (or flats) of M . We let
Mat denote the full subcategory of Clos whose objects are the matroids. In the
literature on matroids, the morphisms of this category are called strong maps.

We pause to recall some necessary terminology about matroids. Let M be a
matroid. An element of C(∅) (if any exists) is called a loop of M ; equivalently, a
loop is an element contained in every closed subset of M . Two non-loop elements
x, y ∈ M are parallel if x ̸= y and x ∈ C(y), or equivalently (by the exchange
axiom), y ∈ C(x).

A matroid M is simple if its closure operator satisfies

C(∅) = ∅ and C(x) = {x} for all x ∈M,

or equivalently, if it has no loops or parallel elements. A pointed matroid (M, 0) is
a matroid with a choice of distiguished loop 0 = 0M ∈M . We similarly say that a
pointed matroid (M, 0) is simple if it satisfies

C(∅) = {0} and C(x) = {x, 0} for all x ∈M,

or equivalently, if it has no loops other than 0 and no parallel elements.
Several related categories of matroids are defined as follows:

• Mat• is the category of pointed matroids with strong morphisms that pre-
serve distinguished loops;

• sMat is the full subcategory of Mat consisting of the simple matroids;
• sMat• is the full subcategory of Mat• consisting of the simple pointed ma-
troids.

These categories and several others were studied in the case of finite matroids
in [HP18].

Given a pointed simple matroid (M, 0), we define a commutative hyperoperation
+: M ×M → P(M) by setting 0 to be the additive identity and, for all x, y ∈
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M \ {0},

x+ y =

{
C(x, y) \ {x, y, 0}, x ̸= y

{x, 0}, x = y.

We note immediately that for all x, y ∈M , this hyperaddition satisfies

x+ y ⊆ C(x, y).

This is a slight adjustment of a similar hyperoperation defined in the context of
projective geometries in [Pre43], which was stated in terms of closure operators
in [FF00, Proposition 3.3.4]. It was already recognized in [CC11, Proposition 3.1]
that the above hyperoperation forms a hypergroup for many projective geometries.
We will return to this connection with projective geometries below.

Theorem 4.26. If (M, 0) is a pointed simple matroid, then (M,+) is a commu-
tative mosaic satisfying −x = x for all x ∈ M . The assignment (M, 0) 7→ (M,+)
which acts identically on morphisms determines a faithful functor

sMat• −→ cMsc .

Proof. Since 0 ∈ x + x for all x ∈ M , we define −x = x. Suppose x ∈ y + z is
satisfied inM . If either y or z is 0, then it is straightforward to verify that y ∈ z−x.
So assume y, z ̸= 0.

Case y = z: Here we have x ∈ y+ y = {y, 0}. If x = 0 then y ∈ y+0 = z−x, and
if x = y then y ∈ y + y = z − x.

Case y ̸= z: In this case we must have x /∈ {y, z, 0} = C(y)∪C(z) by definition of
y + z. Then by the exchange property,

x ∈ C({z} ∪ {y}) \ C(z) =⇒ y ∈ C({z} ∪ {x}) \ C(z).

Since y ̸= x and C(z) = {z, 0}, it follows that y ∈ C(z, x)\{z, x, 0} = z−x.
Thus reversibility is satisfied in all cases, and M is a commutative mosaic.

Now suppose f : M → N is a morphism in sMat•. We claim that the same
function is a morphism of mosaics (M,+) → (N,+). Because f preserves loops,
it satisfies f(0M ) = 0N . Now let x, y ∈ M ; we wish to show that f(x + y) ⊆
f(x) + f(y). This is trivially satisfied if either x or y is 0M , so we may assume
x, y ̸= 0. If x = y then

f(x+ x) = f({0, x}) = {0, f(x)} = f(x) + f(x).

So we may assume that x and y are distinct and nonzero. In this case we have

f(x+ y) = f(C(x, y) \ {x, y}) ⊆ C(f(x), f(y)).

First suppose that f(x) = 0. If also f(y) = 0 then we have f(x + y) = 0 =
f(x) + f(y). So assume f(y) ̸= 0. Let z ∈ x+ y, so that y ∈ z − x = x+ z. Then

f(y) ∈ f(x+ z) ⊆ f(C(x, z)) ⊆ C(f(x), f(z)) = C(0, f(z)) = {0, f(z)}.

Since f(y) ̸= 0 we have f(y) = f(z). This shows that

f(x+ y) ⊆ {f(y)} = 0 + f(y) = f(x) + f(y).

A symmetric argument applies if f(y) = 0. Next suppose that f(x) = f(y) ̸= 0.
Then

f(x+ y) ⊆ C(f(x)) = {0, f(x)} = f(x) + f(x) = f(x) + f(y)
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Finally, we may assume that f(x) and f(y) are distinct and nonzero. Then

f(x) + f(y) = C(f(x), f(y)) \ {f(x), f(y)}.
In this case it remains to check that if z ∈ x+ y then f(z) /∈ {f(x), f(y)}. Assume
toward a contradiction that this fails; without loss of generality we can assume that
f(z) = f(x) ̸= f(y). Since z ∈ x+ y we have y ∈ z−x = x+ z ⊆ C(x, z). But then

f(y) ∈ f(C(x, z)) ⊆ C(f(x), f(z)) = C(f(x)) = {f(x), 0},
which contradicts our assumptions on f(x) and f(y). Thus we have verified in all
cases that f is a morphism of mosaics.

It follows readily that we obtain a functor sMat• → cMsc which commutes with
the forgetful functors to Set. Since these forgetful functors are faithful, the functor
just constructed is also faithful. □

Note that the mosaic associated to a simple pointed matroid (M, 0) is not asso-
ciative if there exist empty sums. While this follows from Lemma 2.6, we may also
directly verify that if x+ y = ∅, then

(x+ x) + y = {0, x}+ y = y ̸= ∅ = x+ (x+ y).

Thus we cannot corestrict the functor above to have codomain Can. We require the
generality of empty and nonassociative sums in order to define the hyperstructure.

The functor above can be used to define functors from several related categories
of matroids by composing with various other functors (which are described in the
finite case in subsections 4.1, 4.3, and 7.1 of [HP18]). First note that there is a
faithful functor Mat → Mat• from matroids to pointed matroids that freely adjoins
a loop to each matroid. It sends simple matroids to simple pointed matroids, thus
restricting to a faithful functor sMat → sMat•.

Furthermore, there are simplification si : Mat → sMat and pointed simplification
si• : Mat• → sMat• functors as follows. For any closure space X, form its lattice of
closed subsets L(X). Conversely, if L is an atomistic lattice, form a closure space
G(L) whose underlying set is the set of atoms of L, and with closure operator given
by C(S) = {a ∈ G(L) | a ≤

∨
S}; by construction one can verify that the smallest

nonempty closed sets in G(L) are the singletons consisting of the atoms. Then it
follows from [FF00, Proposition 3.4.9] that:

• If M is a matroid then L(M) is atomistic and semimodular;
• If L is atomistic and semimodular, then G(L) is a (simple) matroid.

Then the assignment M 7→ G(L(M)) yields a functor Mat → sMat as in [HP18,
Definition 7.11]. In the case where (M, 0) is a pointed matroid, we take si•(M, 0) =
si(M)0 and one verifies that we obtain a functor Mat• → sMat• as in [HP18,
Theorem 7.12]. One can verify that these simplification functors are respectively
left adjoint to the forgetful functors sMat → Mat and sMat• → Mat•.

We obtain the following commuting diagram of functors, with horizontal arrows
being faithful:

sMat sMat• cMsc

Mat Mat•

In this way we can relate all four categories of matroids above to commutative
mosaics by composing.
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From the construction of the mosaic structure (M,+) on a pointed matroid
(M, 0), the functor in Theorem 4.26 cannot be full. This is because the hyperop-
eration on M encodes the action of the closure operator CM on sets of cardinality
at most two (since x + y ⊆ C(x, y)). If one hopes to obtain a full functor, it is
then sensible to restrict to matroids whose closure operators are, in some sense,
fully determined by the closure of two-element sets. We will verify this intuition
in Theorem 4.30 below. Because the corresponding matroids arise from projective
geometries, we pause to define these geometries and describe the connection. We
follow the definitions of projective geometries and their morphisms as developed by
Faure and Frölicher in [FF93,FF98]. Several equivalent descriptions of the struc-
ture of a projective geometry can be found in [FF00, Ch. 2–3]; the one given below
is taken from [FF00, Exercise 2.8.1].

A projective geometry is a set G equipped with a collection ∆ ⊆ P(G) of lines,
subject to the axioms:

• Each line contains at least two points;
• Any two distinct points a ̸= b lie on a unique line ab;
• If a, b, c, d are four distinct points and the lines ab and cd intersect, then so
do ac and bd.

A subspace E of G is a subset such that, if a, b ∈ E and a ̸= b, then ab ⊆ E.
There is an associated hyperoperation ⋆ on G that is defined by letting a ⋆ b be the
smallest subspace of G containing a and b. Thus

a ⋆ b =

{
ab, a ̸= b,

{a}, a = b.

(One can alternatively define projective geometries in terms of such an operation,
as in [FF00, Section 2.2].)

Morphisms of projective geometries are certain partially defined functions. A
partial function f : X 99K Y is a function f : dom f → Y defined on a subset
dom f ⊆ X. The complement of its domain is the kernel of f , denoted ker f =
X \dom f . Any partial function induces a “preimage” mapping f ♯ : P(Y ) → P(X)
by defining, for E ⊆ Y ,

f ♯(E) = f−1(E) ∪ ker f.

If g : Y 99K Z is another partial function, the composite g ◦ f 99K X → Z is defined
by setting ker(g ◦f) = f ♯(ker g) and defining it to be the composite function on the
complement of the kernel. In this way we obtain the category Par whose objects
are sets and whose morphisms are partial functions. There is a straightforward
equivalence of categories [FF00, Proposition 6.1.18]

Par Set•,
∼

which acts on objects by X 7→ X0 := (X ⊔ {0}, 0) and which sends f ∈ Par(X,Y )
to the function f0 : X0 → Y0 that extends f : X \ker f → Y ⊆ Y0 to X0 by mapping
ker f ⊔ {0} to 0 ∈ Y0. This evidently has the property that

f−1
0 (E) = f ♯(E) ⊔ {0}

for all E ⊆ Y .
A morphism f : G 99K H of projective geometries is a partially defined function

such that:

• ker f is a subspace of G;
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• For a, b ∈ G \ ker f and c ∈ ker f , if a ∈ bc then f(a) = f(b);
• If a, b, c ∈ G \ ker f with a ∈ b ⋆ c, then f(a) ∈ f(b) ⋆ f(c).

By [FF00, Proposition 6.2.3], a partial function f : G 99K H is a morphism of pro-
jective geometries if and only if f ♯(E) is a subspace of G whenever E is a subspace
of H. These morphisms are preserved under composition of partial functions. In
this way projective geometries and their morphisms form a category, denoted by
Proj, with a faithful forgetful functor Proj → Par.

The structure of a projective geometry on a set was shown to be equivalent to a
certain matroid structure in [FF00, Section 3.3], which we recall here. Let M be a
matroid. We say that:

• M is finitary if, for all S ⊆M ,

C(S) =
⋃

{C(T ) | T ⊆ S is finite}.

• M satisfies the projective law if, for all S, T ⊆M ,

C(S ∪ T ) =
⋃

{C(x, y) | x ∈ C(S), y ∈ C(T )}.

Finitary simple matroids have been called (combinatorial) geometries [CR70].
We define a projective (pointed) matroid to be a finitary simple (pointed) matroid

that satisfies the projective law. Let pMat and pMat• respectively denote the full
subcategories of sMat and sMat• consisting of the (pointed) projective matroids.

Let G be a projective geometry, and let C be the closure operator on G that
assigns to S ⊆ G the smallest subspace C(S) ⊆ G containing S. It is shown
in [FF00, Proposition 3.1.13] that G is a finitary simple matroid. With a slight
abuse of notation, we let G denote both the projective geometry and its associated
matroid. Then we let G0 denote the simple pointed matroid associated to the
simple matroid G, i.e. its image under the functor sMat → sMat•.

We claim that this assignment extends to a functor

Proj → sMat•,

G 7→ G0.
(4.27)

Indeed, if f : G 99K H is a morphism of projective geometries, it extends to a
function on pointed sets f0 : G0 → H0 by f0(ker f ⊔ {0}) = 0. Then if E ⊆ H is a
subspace of H, we have

f−1
0 (E ⊔ {0}) = f ♯(E) ⊔ {0},

where f ♯(E) ⊆ G is a subspace as discussed above. Thus the preimage of any closed
set in H0 is closed in G0, so that f0 is a morphism of matroids. The remaining
axioms of functoriality for f 7→ f0 are readily verified.

Proposition 4.28. The functor (4.27) sending a projective geometry to the corre-
sponding pointed matroid yields an equivalence of categories

Proj
∼−→ pMat• .

Under this correspondence, if f ∈ Proj(G,H) has ker f = N , then the kernel of
f0 ∈ pMat•(G0, H0) is N ⊔ {0}.

Proof. The essential image of the functor consists of exactly the projective pointed
matroids thanks to [FF00, Corollary 3.3.8], which shows that that for any set G,
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there is a bijection between the structures of a projective geometry on G and the
structures of a projective matroid on G. The functor is faithful since the diagram

Proj pMat•

Par Set•
∼

commutes, where the vertical arrows are faithful forgetful functors. Lastly, the
functor is full by the characterization [FF00, Proposition 6.2.3] of morphisms of
projective geometries as exactly those partial functions f : G 99K H such that
f ♯(E) is a subspace of G whenever E is a subspace of H. □

IfM is a commutative mosaic and S ⊆M , we let ⟨S⟩ denote the strict submosaic
of M generated by S.

Proposition 4.29. Let G be a pointed projective matroid. For any S ⊆ G, we
have C(S) = ⟨S⟩. Thus the closed subsets of G are precisely the strict submosaics
of G.

Proof. Note that S ∪ {0} ⊆ C(S) and that if α, β ∈ C(S) then

α+ β ⊆ C(α, β) ⊆ C(C(S)) = C(S).

Thus C(S) is a strict submosaic containing S, and it follows that ⟨S⟩ ⊆ C(S).
Conversely we wish to show that C(S) ⊆ ⟨S⟩. Because G is finitary, we have

C(S) =
⋃
C(T ) where T ranges over the finite subsets of S. Thus it suffices to

consider the case where S is finite. The claim is easily verified if S is empty or a
singleton, so we may assume S = {x1, . . . , xn} and assume for inductive hypothesis
that the claim holds for all sets of cardinality at most n− 1.

Let α ∈ C(S) = C({x1} ∪ {x2, . . . , xn}). It follows from the projective axiom
that α ∈ C(x1, β) for some β ∈ C(x2, . . . , xn). By inductive hypothesis, β ∈
⟨x2, . . . , xn⟩ ⊆ ⟨S⟩. If α ∈ {x1, β, 0} then certainly α ∈ ⟨S⟩. Otherwise x1 and β
are nonzero and distinct (else α ∈ C(x1, β) ⊆ {x1, β, 0}), in which case

α ∈ C(x1, β) \ {x1, β, 0} = x1 + β ⊆ ⟨S⟩

because x1, β ∈ ⟨S⟩. Thus we find C(S) ⊆ ⟨S⟩ as desired. □

Theorem 4.30. The functor sMat• → cMsc restricts to a fully faithful functor on
the full subcategory of pointed projective matroids, yielding a fully faithful functor

Proj ∼= pMat• ↪→ cMsc .

Proof. By Theorem 4.26, the functor pMat• → cMsc is faithful. To see that it is
full, let G and H be pointed projective matroids and let f ∈ cMsc(G,H). We
wish to show that f is a strong map of matroids. Let E ⊆ H be a closed subset.
By Proposition 4.29 this means that E is a strict submosaic of H. Because f
is a morphism of mosaics, it is straightforward to verify that f−1(E) is a strict
submosaic of G. (Alternatively, by Proposition 4.4 we have E = kerα for some
α ∈ cMsc(H,K), and then one may deduce that f−1(E) = ker(αf) is strict.) But
then f−1(E) is closed in G by Proposition 4.29 again, proving that f is a strong
map as desired. □
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[FF98] Claude-Alain Faure and Alfred Frölicher, Categorical aspects in projective geometry,
Appl. Categ. Structures 6 (1998), no. 1, 87–103.

[Gra21] Marino Gran, An introduction to regular categories, New Perspectives in Algebra,

Topology and Categories, 2021, pp. 113–145.
[HP18] Chris Heunen and Vaia Patta, The category of matroids, Appl. Categ. Structures 26

(2018), no. 2, 205–237.

[HR14] Chris Heunen and Manuel L. Reyes, Active lattices determine AW∗-algebras, J. Math.
Anal. Appl. 416 (2014), no. 1, 289–313.

[Jag99] Dominik Jagie l lo, Tensor products in concrete categories, Demonstratio Math. 32

(1999), no. 2, 273–280.
[JST22] Jaiung Jun, Matt Szczesny, and Jeffrey Tolliver, Proto-exact categories of modules

over semirings and hyperrings, 2022. arXiv preprint arXiv:2202.01573.
[Jun16] Jaiung Jun, Hyperstructures of affine algebraic group schemes, J. Number Theory 167

(2016), 336–352.
[Jun18] Jaiung Jun, Algebraic geometry over hyperrings, Adv. Math. 323 (2018), 142–192.
[Jun21] Jaiung Jun, Geometry of hyperfields, J. Algebra 569 (2021), 220–257.

[Kra57] Marc Krasner, Approximation des corps valués complets de caractéristique p ̸= 0 par
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