PROBLEM LIST The Second Irvine Conference In Inner Model Theory UC Irvine, July 2023

Problem 1 (Steel): Formulate a background condition for the K^c -construction and prove a form of UBH for iteration trees on (levels) of K^c .

For instance, take the background conditions for K^c in CMIP (or require something even weaker, like ultrapowers by background extenders are closed under 2^{ω} sequences). Suppose M is transitive such that $M^{\omega} \subseteq M$ and there is a Σ_2 elementary embedding $\pi : M \to V$ and \mathcal{T} is an iteration tree on $(K^c)^M$ such that $lh(\mathcal{T}) = \omega$ and \mathcal{T} has no drops. Can there be distinct cofinal branches b, c of \mathcal{T} such that there are realization maps $\sigma_b : \mathcal{M}_b^{\mathcal{T}} \to K^c, \sigma_c : \mathcal{M}_c^{\mathcal{T}} \to K^c$ with the property that

$$\pi = \sigma_b \circ i_b^{\mathcal{T}} = \sigma_c \circ i_c^{\mathcal{T}}?$$

Problem 2 (Zeman): Assume every function $f : \omega_2 \cap \operatorname{cof}(\omega_1) \to \omega_2$ is bounded by a canonical function on a club. Does there exist a sharp mouse \mathcal{M} with a measurable κ such that $o^{\mathcal{M}}(\kappa) \ge 2$?

- **Remark 0.1.** The theory "for every function $f : \omega_1 \to \omega_1$ is bounded on a club by a canonical function" is equiconsistent with "in K, there is an inaccessible limits of measurable cardinals".
 - The forcing direction is due to Larson-Woodin, Larson-Shelah; the inner model direction is due to Deiser-Donder.

Problem 3 (Trang): Are the following theories equiconsistent?

- (a) $ZF + DC + \omega_1$ is supercompact.
- (b) $ZF + DC + \omega_1$ is strongly compact.
- (c) ZFC + there is a proper class of Woodin limit of Woodin cardinals.

Remark 0.2. 1. One can add AD^+ to the theories (a) and (b) above.

- 2. The theories
 - (i) $\mathsf{ZF} + \mathsf{DC} + \omega_1$ is \mathbb{R} -supercompact.
 - (*ii*) $\mathsf{ZF} + \mathsf{DC} + \omega_1$ is \mathbb{R} -strongly compact.
 - *(iii)* **ZFC** + *there is a measurable cardinal.*

are equiconsistent.

3. The theory "ZF + AD + ω_1 is \mathbb{R} -strongly compact" follows from ZF + AD. The theory "ZF + AD + ω_1 is \mathbb{R} -supercompact" is equiconsistent with "ZFC + there are ω^2 many Woodin cardinals" (Woodin) and therefore is strictly stronger than ZF + AD.

4. The theory "ZF + DC + ω_1 is $\mathcal{P}(\mathbb{R})$ -strongly compact" is equiconsistent with $AD_{\mathbb{R}} + DC$ while the theory "ZF + DC + ω_1 is $\mathcal{P}(\mathbb{R})$ -supercompact" is strictly stronger (Trang-Wilson).

Problem 4 (Adolf): Let κ be a singular cardinal and let \mathcal{W} be a premouse with $ON \cap W = \kappa$. Suppose $\mathcal{M}_1, \mathcal{M}_2$ are sound, countably iterable premice such that $\rho_{\omega}(\mathcal{M}_1) = \rho_{\omega}(\mathcal{M}_2) = \kappa$. Is $\mathcal{M}_1 \leq \mathcal{M}_2$ or $\mathcal{M}_2 \leq \mathcal{M}_1$?

Remark 0.3. The above question has positive answer in the case $\kappa > \omega$ is regular, cf. "Stacking mice" (Jensen, Schimmerlinng, Schindler, Steel) and the case κ is singular with $cof(\kappa) > \omega$ (Adolf).

Problem 5 (Steel): Develop the theory of strategy mice with long extenders.

Problem 6 (Schlutzenberg): Are there models V, W of ZFC with V an inner model of W, W is not class generic over V such that no set in $W \setminus V$ is set generic over V?

Problem 7 (Wilson): Are the following theories equiconsistent?

- (i) ZFC + there is a Woodin cardinal.
- (ii) ZFC + ω_2 is a weak Vopenka cardinal (i.e. there is no sequence $(B_\alpha : \alpha < \omega_2)$ of structures of size at most ω_1 in a common signature of size at most ω_1 such that for all $\alpha, \beta < \omega_2$, the number of homomorphisms from $B_\alpha \to B_\beta$ is 0 if $\alpha < \beta$ and 1 otherwise.

Remark 0.4. • It is almost true that Con(i) implies Con(ii).

• (ii) implies $\neg CH$.

Problem 8 (Steel): Let AD_2 be the theory:

- 1. $\mathsf{ZF} + \mathsf{DC} + \mathsf{AD}_{\mathbb{R}} + \Theta$ is regular.
- 2. Letting $Hom = \mathcal{P}(\mathbb{R})$ and HS be the set of all homogeneity systems for subsets of \mathbb{R} , for $\mathcal{A} \subset Hom$, define $Code(\mathcal{A}) = \{\overline{\mu} \in HS : S_{\overline{\mu}} \in \mathcal{A}\}$. For every $\mathcal{A} \subseteq Hom$, $Code(\mathcal{A})$ is Suslin (i.e. there is a tree T on $\Theta \times \gamma$ for some γ such that $Code(\mathcal{A}) = p[T]$).
- 3. There is a normal fine measure on $\mathcal{P}_{\omega_1}(Hom)$.
- 4. Let $R \subseteq Hom \times \mathcal{P}(Hom)$ and $\forall A \exists \mathcal{B}R(A, \mathcal{B})$ then there is a function $f : Hom \times Hom \rightarrow \mathcal{P}(Hom)$ such that $\forall A, BR(A, f(A, B))$.
- 5. Let $R \subseteq \mathcal{P}(Hom) \times \mathcal{P}(Hom)$ and $\forall \mathcal{A} \subseteq Hom \exists \mathcal{B} \subseteq Hom \ R(\mathcal{A}, \mathcal{B})$ then there is an f such that whenever $\mathfrak{X} \subseteq \mathcal{P}(Hom)$ and \mathfrak{X} is a surjective image of Hom then
 - (i) $\forall \mathcal{A} \in \mathfrak{X} \exists \mathcal{B} \in f(\mathfrak{X}) \ R(\mathcal{A}, \mathcal{B}).$
 - (ii) $f(\mathfrak{X})$ is a surjective image of Hom.
- (a) Is AD_2 consistent?
- (b) Is (1) + (2) consistent?
- (c) For $Y \subseteq Hom^{\omega}$, let G_Y^1 be the game where players I, II take turns to play homogeneity systems $\overline{\mu}_i$ for $i < \omega$, II wins the run iff $\langle S_{\overline{\mu}i} : i < \omega \rangle \in Y$. We say G^1 -determinacy holds if for every $Y \subseteq Hom^{\omega}, G_Y^1$ is determined. Does G^1 -determinacy follow from AD_2 ?

- (d) Does (1)-(4) imply Θ^+ is regular?
- (e) Does Θ^+ is regular + (1)-(4) imply (5)?
- (f) Define the class Hom_{∞}^2 to be the collection of homogeneously Suslin subsets of Hom in a natural way. What is the theory of $L(Hom_{\infty}^2)$? Does $L(Hom_{\infty}^2) \models AD_2$?
- (g) Is the UB powerset \mathcal{A}_{∞} a subset of Hom_{∞}^2 ?
- **Remark 0.5.** (1) implies every set of reals is homogeneously Suslin and every set of reals is coded by an element of Θ^{ω} .
 - Given $X \subseteq Hom \times Hom$, let G_X^0 be the game where I, II take turns to play measures $(\mu_{s_i} : i < \omega)$ (I's plays) and $(\nu_{s_i} : i < \omega)$ (II's plays), I wins iff $(S_{\bar{\mu}}, S_{\bar{\nu}}) \in X$. G^0 -determinacy is the statement G_X^0 is determined for every $X \subseteq Hom \times Hom$. G^0 -determinacy follows from (1)-(3).
 - (4) is equivalent to the statement in $V^{Coll(\omega, \mathcal{P}(\mathbb{R}))}$, the countable axiom of choice holds for relations on $\omega \times \mathbb{R}$.
 - (1)-(5) implies Θ^+ is regular.
 - Assume κ is supercompact and $g \subset Coll(\omega, 2^{2^{\kappa}})$ is V-generic, then Hom_{∞}^2 is sealed, and $L(Hom_{\infty}^2) \cap \mathcal{P}(\mathbb{R}) = Hom_{\infty}^2$; therefore, $L(Hom_{\infty}^2) \models \mathsf{AD}_{\mathbb{R}}$.

Problem 9 (Trang): Suppose AD holds and \mathbb{P} is a nontrivial set forcing.

- (a) If $1 \Vdash_{\mathbb{P}} \check{\mathbb{R}} \subseteq \dot{\mathbb{R}}$, must AD fail in $V^{\mathbb{P}}$?
- (b) Can there be a nontrivial elementary embedding $j: V \to V[g]$ for any V-generic $g \subseteq \mathbb{P}$?
- (c) Are there models M, N of AD such that M is an inner model of N, \mathbb{R}^M is uncountable in N, and $\omega_1^M < \omega_1^N$?
- **Remark 0.6.** Chan-Jackson and Ikegami-Trang show that the answer to (a) is "yes" if \mathbb{P} is a surjective image of \mathbb{R} .
 - Schlutzenberg shows that there cannot be any elementary embedding $j: V[g] \to V$ if g adds a new set of ordinals.
 - Using techniques of Velikovic-Woodin, if \mathbb{P} adds a real, then $\omega_1^V < \omega_1^{V[g]}$.

Problem 10 (Wilson): Let C be a nontrivial class of structures (e.g. graphs, trees, wellfounded labeled trees). Let VP(C) say for every proper class of structures in C there is a homomorphism from one to another. What are the possible consistency strengths of principles of the form VP(C) for "natural" C?

Remark 0.7. The consistency strength of the following classes is known:

- (i) VP(graphs) : VP
- (ii) VP(2-labeled trees): virtual VP/ON is virtually Woodin for supercompactness
- (iii) VP(wellfounded 2-labeled trees): virtual weak VP / ON is virtually Woodin
- (*iv*) VP(*well-founded trees*) : ZFC