PROBLEM LIST
 The Second Irvine Conference In Inner Model Theory UC Irvine, July 2023

Problem 1 (Steel): Formulate a background condition for the K^{c}-construction and prove a form of UBH for iteration trees on (levels) of K^{c}.

For instance, take the background conditions for K^{c} in CMIP (or require something even weaker, like ultrapowers by background extenders are closed under 2^{ω} sequences). Suppose M is transitive such that $M^{\omega} \subseteq M$ and there is a Σ_{2} elementary embedding $\pi: M \rightarrow V$ and \mathcal{T} is an iteration tree on $\left(K^{c}\right)^{M}$ such that $\operatorname{lh}(\mathcal{T})=\omega$ and \mathcal{T} has no drops. Can there be distinct cofinal branches b, c of \mathcal{T} such that there are realization maps $\sigma_{b}: \mathcal{M}_{b}^{\mathcal{T}} \rightarrow K^{c}, \sigma_{c}: \mathcal{M}_{c}^{\mathcal{T}} \rightarrow K^{c}$ with the property that

$$
\pi=\sigma_{b} \circ i_{b}^{\mathcal{T}}=\sigma_{c} \circ i_{c}^{\mathcal{T}} ?
$$

Problem 2 (Zeman): Assume every function $f: \omega_{2} \cap \operatorname{cof}\left(\omega_{1}\right) \rightarrow \omega_{2}$ is bounded by a canonical function on a club. Does there exist a sharp mouse \mathcal{M} with a measurable κ such that $o^{\mathcal{M}}(\kappa) \geq 2$?

Remark 0.1. - The theory "for every function $f: \omega_{1} \rightarrow \omega_{1}$ is bounded on a club by a canonical function" is equiconsistent with "in K, there is an inaccessible limits of measurable cardinals".

- The forcing direction is due to Larson-Woodin, Larson-Shelah; the inner model direction is due to Deiser-Donder.

Problem 3 (Trang): Are the following theories equiconsistent?
(a) $\mathrm{ZF}+\mathrm{DC}+\omega_{1}$ is supercompact.
(b) $\mathrm{ZF}+\mathrm{DC}+\omega_{1}$ is strongly compact.
(c) ZFC + there is a proper class of Woodin limit of Woodin cardinals.

Remark 0.2. 1. One can add AD^{+}to the theories (a) and (b) above.
2. The theories
(i) $\mathrm{ZF}+\mathrm{DC}+\omega_{1}$ is \mathbb{R}-supercompact.
(ii) $\mathrm{ZF}+\mathrm{DC}+\omega_{1}$ is \mathbb{R}-strongly compact.
(iii) $\mathrm{ZFC}+$ there is a measurable cardinal.
are equiconsistent.
3. The theory " $\mathrm{ZF}+\mathrm{AD}+\omega_{1}$ is \mathbb{R}-strongly compact" follows from $\mathrm{ZF}+\mathrm{AD}$. The theory " $\mathrm{ZF}+\mathrm{AD}+$ ω_{1} is \mathbb{R}-supercompact" is equiconsistent with "ZFC + there are ω^{2} many Woodin cardinals" (Woodin) and therefore is strictly stronger than ZF + AD.
4. The theory " $\mathrm{ZF}+\mathrm{DC}+\omega_{1}$ is $\mathcal{P}(\mathbb{R})$-strongly compact" is equiconsistent with $\mathrm{AD}_{\mathbb{R}}+\mathrm{DC}$ while the theory " $\mathrm{ZF}+\mathrm{DC}+\omega_{1}$ is $\mathcal{P}(\mathbb{R})$-supercompact" is strictly stronger (Trang-Wilson).

Problem 4 (Adolf): Let κ be a singular cardinal and let \mathcal{W} be a premouse with $O N \cap W=\kappa$. Suppose $\mathcal{M}_{1}, \mathcal{M}_{2}$ are sound, countably iterable premice such that $\rho_{\omega}\left(\mathcal{M}_{1}\right)=\rho_{\omega}\left(\mathcal{M}_{2}\right)=\kappa$. Is $\mathcal{M}_{1} \unlhd \mathcal{M}_{2}$ or $\mathcal{M}_{2} \unlhd \mathcal{M}_{1}$?

Remark 0.3. The above question has positive answer in the case $\kappa>\omega$ is regular, cf. "Stacking mice" (Jensen, Schimmerlinng, Schindler, Steel) and the case κ is singular with $\operatorname{cof}(\kappa)>\omega$ (Adolf).

Problem 5 (Steel): Develop the theory of strategy mice with long extenders.
Problem 6 (Schlutzenberg): Are there models V, W of ZFC with V an inner model of W, W is not class generic over V such that no set in $W \backslash V$ is set generic over V ?

Problem 7 (Wilson): Are the following theories equiconsistent?
(i) ZFC + there is a Woodin cardinal.
(ii) $\mathrm{ZFC}+\omega_{2}$ is a weak Vopenka cardinal (i.e. there is no sequence ($B_{\alpha}: \alpha<\omega_{2}$) of structures of size at most ω_{1} in a common signature of size at most ω_{1} such that for all $\alpha, \beta<\omega_{2}$, the number of homomorphisms from $B_{\alpha} \rightarrow B_{\beta}$ is 0 if $\alpha<\beta$ and 1 otherwise.

Remark 0.4. - It is almost true that Con(i) implies Con(ii).

- (ii) implies $\neg \mathrm{CH}$.

Problem 8 (Steel): Let $A D_{2}$ be the theory:

1. $Z F+D C+A D_{\mathbb{R}}+\Theta$ is regular.
2. Letting $H o m=\mathcal{P}(\mathbb{R})$ and $H S$ be the set of all homogeneity systems for subsets of \mathbb{R}, for $\mathcal{A} \subset H o m$, define $\operatorname{Code}(\mathcal{A})=\left\{\bar{\mu} \in H S: S_{\bar{\mu}} \in \mathcal{A}\right\}$. For every $\mathcal{A} \subseteq H o m, \operatorname{Code}(\mathcal{A})$ is Suslin (i.e. there is a tree T on $\Theta \times \gamma$ for some γ such that $\operatorname{Code}(\mathcal{A})=p[T]$).
3. There is a normal fine measure on $\mathcal{P}_{\omega_{1}}(H o m)$.
4. Let $R \subseteq H o m \times \mathcal{P}(H o m)$ and $\forall A \exists \mathcal{B} R(A, \mathcal{B})$ then there is a function $f: H o m \times H o m \rightarrow$ $\mathcal{P}($ Hom $)$ such that $\forall A, B R(A, f(A, B))$.
5. Let $R \subseteq \mathcal{P}(\operatorname{Hom}) \times \mathcal{P}(H o m)$ and $\forall \mathcal{A} \subseteq \operatorname{Hom} \exists \mathcal{B} \subseteq \operatorname{Hom} R(\mathcal{A}, \mathcal{B})$ then there is an f such that whenever $\mathfrak{X} \subseteq \mathcal{P}($ Hom $)$ and \mathfrak{X} is a surjective image of Hom then
(i) $\forall \mathcal{A} \in \mathfrak{X} \exists \mathcal{B} \in f(\mathfrak{X}) R(\mathcal{A}, \mathcal{B})$.
(ii) $f(\mathfrak{X})$ is a surjective image of Hom.
(a) Is AD_{2} consistent?
(b) Is (1) $+(2)$ consistent?
(c) For $Y \subseteq H_{o m}{ }^{\omega}$, let G_{Y}^{1} be the game where players I, $I I$ take turns to play homogeneity systems $\bar{\mu}_{i}$ for $i<\omega, I I$ wins the run iff $\left\langle S_{\overline{\mu_{i}}}: i<\omega\right\rangle \in Y$. We say G^{1}-determinacy holds if for every $Y \subseteq H o m^{\omega}, G_{Y}^{1}$ is determined. Does G^{1}-determinacy follow from AD_{2} ?
(d) Does (1)-(4) imply Θ^{+}is regular?
(e) Does Θ^{+}is regular $+(1)-(4)$ imply (5)?
(f) Define the class $H o m_{\infty}^{2}$ to be the collection of homogeneously Suslin subsets of Hom in a natural way. What is the theory of $L\left(H o m_{\infty}^{2}\right)$? Does $L\left(H o m_{\infty}^{2}\right) \vDash \mathrm{AD}_{2}$?
(g) Is the UB powerset \mathcal{A}_{∞} a subset of $H o m_{\infty}^{2}$?

Remark 0.5. - (1) implies every set of reals is homogeneously Suslin and every set of reals is coded by an element of Θ^{ω}.

- Given $X \subseteq H o m \times H o m$, let G_{X}^{0} be the game where I, II take turns to play measures ($\mu_{s_{i}}$: $i<\omega$) (I's plays) and ($\nu_{s_{i}}: i<\omega$) (II's plays), I wins iff $\left(S_{\bar{\mu}}, S_{\bar{\nu}}\right) \in X . G^{0}$-determinacy is the statement G_{X}^{0} is determined for every $X \subseteq H o m \times H o m . ~ G^{0}$-determinacy follows from (1)-(3).
- (4) is equivalent to the statement in $V^{\operatorname{Coll}(\omega, \mathcal{P}(\mathbb{R}))}$, the countable axiom of choice holds for relations on $\omega \times \mathbb{R}$.
- (1)-(5) implies Θ^{+}is regular.
- Assume κ is supercompact and $g \subset \operatorname{Coll}\left(\omega, 2^{2^{\kappa}}\right)$ is V-generic, then $H o m_{\infty}^{2}$ is sealed, and $L\left(H o m_{\infty}^{2}\right) \cap \mathcal{P}(\mathbb{R})=$ Hom $_{\infty}^{2}$; therefore, $L\left(H o m_{\infty}^{2}\right) \vDash \mathrm{AD}_{\mathbb{R}}$.

Problem 9 (Trang): Suppose AD holds and \mathbb{P} is a nontrivial set forcing.
(a) If $1 \Vdash_{\mathbb{P}} \check{\mathbb{R}} \subsetneq \dot{\mathbb{R}}$, must AD fail in $V^{\mathbb{P}}$?
(b) Can there be a nontrivial elementary embedding $j: V \rightarrow V[g]$ for any V-generic $g \subseteq \mathbb{P}$?
(c) Are there models M, N of AD such that M is an inner model of N, \mathbb{R}^{M} is uncountable in N, and $\omega_{1}^{M}<\omega_{1}^{N}$?
Remark 0.6. - Chan-Jackson and Ikegami-Trang show that the answer to (a) is "yes" if \mathbb{P} is a surjective image of \mathbb{R}.

- Schlutzenberg shows that there cannot be any elementary embedding $j: V[g] \rightarrow V$ if g adds a new set of ordinals.
- Using techniques of Velikovic-Woodin, if \mathbb{P} adds a real, then $\omega_{1}^{V}<\omega_{1}^{V[g]}$.

Problem 10 (Wilson): Let \mathcal{C} be a nontrivial class of structures (e.g. graphs, trees, wellfounded labeled trees). Let $V P(\mathcal{C})$ say for every proper class of structures in \mathcal{C} there is a homomorphism from one to another. What are the possible consistency strengths of principles of the form $V P(\mathcal{C})$ for "natural" \mathcal{C} ?

Remark 0.7. The consistency strength of the following classes is known:
(i) $V P$ (graphs) : VP
(ii) $V P(2$-labeled trees): virtual VP/ON is virtually Woodin for supercompactness
(iii) VP(wellfounded 2-labeled trees): virtual weak VP / ON is virtually Woodin
(iv) VP(well-founded trees): ZFC

