Question: Let E be an equiv relation on R. Is there a Δ^1_1 set C so that $E \cap C$ is Δ^1_1?

Silva: If E is Δ^1_1 equiv relation then either E has countably many equiv classes or a perfect set of E-inequivalent elements.

Def: I a σ-ideal on R

$$P^*_I = (\Delta^1_1 \setminus I, \subseteq)$$

Fact: There is a P^*_I-name for a real $x_{\check{g}}$ s.t. if $g \in P^*_I$ and B is a Δ^1_1-set coded in V then

$$V[g]^I = x_{\check{g}} \in B \iff B \in g$$

Fact: $x_{\check{g}}$ is not in any ground model coded I-small set.

Def: $M \prec V_{\text{ad}}$

$x \in R$ is P^*_I-generic $/ M$ iff

$$\{ B \in \Delta^1_1^{V_{\text{ad}}} | x \check{\in} B \}$$

is a P^*_I-generic object $/ M$.

Fact: (Zapletal) TFAE:

1. P^*_I is proper

2. all $\subseteq M \prec V_{\text{ad}}$

$B \in \Delta^1_1$ set

$$\{ x \check{\in} B \}$$

is $I^+ \Delta^1_1$.
Question. Let E be a Σ^1_1 eqv rel. $B \weq_1 I^+ \mathcal{C}$.

Prop. Is there a $C \subseteq B$, $I^+ \weq_2 I$, s.t. $\mathcal{E} \cap C = \Delta^1_1$.

Fact (Kacurek-Sakamoto-Zapletal) N.

Fact (15-5-2) If E is Σ^1_1 with all classes Π^1_1 then E is Δ^1_1-resolvable to the orbit eqv rel. of a Polish group action.

Hence yes.

Example $x \subseteq E \setminus y \iff w^x = w^y$.

E is Σ^1_1, classes Δ^1_1, uncountable many classes, is thin.

Let I be the σ-ideal generated by F_0, classes.

Thus (Chmiel, Magidor, indep.) If there is a measurable cardinal then yes.

Fact (15+2) If E is thin Σ^1_3 eqv rel. then there is a set $C \subseteq I^+ \weq_2 I$. $\mathcal{E} \cap C$ is a single class.

Fact (Let κ be a measurable cardinal in \mathbb{L}. $g \subseteq \mathbb{C} \cap \mathcal{L}(\omega_1)$.

In $L[\mathbb{G}]$: if I is s.t. \mathcal{P}_I is proper, E is Π^1_3 eqv rel. with countable many classes, then there is $C \subseteq I^+ \weq_2 I$. $\mathcal{E} \cap C$ is Δ^1_1.

Question. What if E is projective s.t. all equivalence classes Σ^1_3, Π^1_3. Can you find an $I^+ \weq_2 I$ s.t. $\mathcal{E} \cap C$ is Σ^1_3 or Π^1_3?
Fact (Indep. Diamon): In L, there is an epimorphic E_L such that $E_L \models L$ for all \mathcal{E} with all closed classes and the \mathcal{E} has negative answer for all σ-ideals E_L.

$E_L y \models E_L y$ appear first at the same admissible level of L.

Question: What about all epimorphic relations E, with $E \models L$?

If needs can be ω-ordered: No.

Open: Is a negative answer for $E \models L$ consistent?

REM All negative answers rely on Silver Dichotomy.

General framework for positive answer (joint with Magidor):

- Background on homogeneous tree

Let G be a homogeneous tree on $\omega_1 \times \omega$ and $E_G = P[\mathcal{B}]$.

Let I be a σ-ideal on \mathcal{R} with P^+ proper.

$(2c + \omega)$ $\models \exists \mathcal{E}$ is a homogeneous tree.

Define $D(x, T) \models T$ is a tree on $\omega_1 \times \omega$ and

$E_G y \models T$ is self-founded.
\[p(T) = f(x) \]

(B) \(\forall x \in T \) \(D(x,T) \) and \(\exists ! x \in T \) \(D(T,T) \)

(C) There are a hole in \(w \times w \times 1 \).

\[P[U] = \{ (x,T) | D(x,T) \} \]

\[\exists \exists p \subseteq P[U] = \{ (x,T) | D(x,T) \} \]

Thus if \(A, B, C \) hold, \(B \) \(y \in T \) \(T \) then

Fix \(V \subseteq B \) \(y \in T \) \(T \) \(X \in T \).

Claim if \(\exists x \in \exists_1 \) \(-n \) \(\) \(\exists M \) and \(x, T \in M \) for \(\) \(D(x,T) \) then \(V = D(T,T) \).

By (C) \(M(T) \subseteq D(x,T) \)

\[M(T) = \{ (x,T) \} \in P[U] \]

Fix \(g_1 \) \(\exists -gen \) \(/ M \) \(B(T) \)

\[M(T) \subseteq \exists x \in T \) \(D(x,T) \).

So \(T \in M(T) \) \(\) \(M(T) \subseteq D(T,T) \)

\[(T) \subseteq P \subseteq T \]

\[\begin{array}{c|cc}
 & m_{0,0} & m_{1,0} \\
 \hline
 m_{0,0} & x_0 & x_1 \\
 \end{array} \]
Rules:

1. I plays m_0, II plays $m_1 < \gamma$
2. $(m_0 \ldots m_k, m_0 \ldots m_{k-1}) \in T$
3. $1 \in \{ m_1, m_2 \ldots m_{k-1}, d_0 \ldots d_{k-1} \} \in S$

The first who violates rules, loses. With the play run for w steps, II wins.

Claim: In $M(g)$ II has a w.s.

Proof: If II has a w.s. $s^g \in T^w$. By (A) $M(g)$ is a homogeneous.

Fix a homogeneous system S.

We construct $(a_0, k_2w), (b_2, k_2w), (A_k, k_2w)$

$(a_0, b_0) = \tau^k(\varnothing), A_0 = \varnothing$

Suppose $a_0, \ldots a_{i+1}, b_0, \ldots b_{k-1}, A_0, A_{k-1}$ defined. Let

$h_k: \mathcal{S}^{\leq k} \rightarrow w \times w$

$((a_0, b_0), \ldots (a_{i+1}, b_{i+1})) \in \mathcal{S}^{\leq k}$

$\mu_{g_{\leq i}}, \varnothing$ concentrates on $\mathcal{S}^{\leq k} + 0 \circ \varphi \circ \mathcal{S}$

So there a unique (a_i, b_i) s.t.

$h_k(a_i, b_i) \in \mu_{g_i, \varnothing}$

Let $L: w \rightarrow w \times w$. Let $k = (a_i, b_i)$
Claim that \(LE(T) \)

If not: \(L(aT_{k+1}) \subset L(\tau) \cup \{ \tau \} \).

Denote \(\mu_i = \mu_k \cap \omega_i \). If \(i \leq j \) let \(\mu_j \) extend \(\mu_i \).

\(\forall \mu_k \subseteq (A_1) \in M_\kappa \) so the intersection \(\mu_k \subseteq (A_1) \in M_\kappa \) in that set.

Play \(\bigotimes \tau \) when \(\Pi \) uses \(\tau \) and \(\Pi \) uses \(\beta \).

\(\mu_0, \ldots, \mu_{k-1} \). \((\beta, \beta') \in A_1 = \mu_{k-1} \) \[3^{k-1,2} \]

\(\Pi \) does not lose at \(k \). But \(\beta \neq \beta \). \(\alpha_{k+1} \in L(\tau) \cup \{ \tau \} \)

So I do the first to lose. \(\beta \).

We showed: \(LE(T^+) = \{ q \} \in S \)

Let \(\alpha = (a_0, \ldots) \). This means \(q \in S \alpha_{\omega} \downarrow \). \((q, \alpha) \notin \bigotimes \sigma \).

\(\delta: \omega \rightarrow \omega + \omega \)

\(\delta(\omega) = (q, \langle b \rangle \alpha b) \)

\((\kappa, \kappa) \) is a w.f.t. \(A \in \mathcal{F}_{\kappa} \) all \(\kappa \).

Then is \(\Phi: \omega \rightarrow \omega \). \(\Phi(k) \in \mathcal{F}_{\kappa} \) all \(\kappa \).

Play \(\bigotimes \tau \). I uses \(\tau \). \(\Pi \) uses \(\Phi \)

No one loses at finite stage, so \(\Pi \) wins. \(\delta \). \(\Phi \).

Claim: For \(\tau \in \mathcal{M}(\tau) \) for \(\Pi \). Then \(\tau \) is a w.s. for \(\Pi \).

\(\Phi \) is finite. \(B/C \) the game is closed.
Claim 4: \(y \in \mathbb{R}^n \in \mathcal{E}_S \text{ and } g \in \mathcal{M}(\mathbb{R}^n) \) imply

By Claim 1: \(\mathcal{M}(g) \subseteq D(g, t) \Rightarrow \forall \mathcal{E} \subseteq D(g, t) \)

so \((g)_{\mathcal{E}_S} = p(T) \Rightarrow y \in p(T) \) so \((y, t) \in T \) since \(T \) wining in \(U \). But (in \(V \)) \(g \in T \), s.t. I am in \(y \) and \(T \) wins. Since \((y, t) \in \mathcal{E}(T) \), I do not lose. I cannot lose as \(T \) is winning. Let \(\phi(k) = \phi_k = \text{the } k \text{'th response according to } k \).

Since \(T \in \mathcal{M}(g) \): \(\phi(k) \in \mathcal{M}(g) \). Since \(P_T \) is proper, \(M \) and \(\mathcal{M}(g) \) have same ordinals so \(\phi(k) \in M \).

\(g \in \mathcal{M}(\mathbb{R}^n) \). So \(\mathcal{E}_S \) \(g \Rightarrow \mathcal{E}(\mathbb{R}^n) \).

By proposition: let \(C \subseteq B \in \Delta^1 \), \(I^+ \) \(q, h \in C \)

\(q \in \mathcal{E}_C \Rightarrow (\mathbb{R}^n) \Rightarrow g \mathcal{E}_C \). \\

(A) \(I^- S \) is homogeneous

\(|P_{\pm 1} = 2 \phi_0 \)

(B) \(\forall x \in T \) \(D(x, T) \Rightarrow P \)

(C) \(\pi(T) = \cdots D(x, T) \)

Thus (with Magidor) \(P_T \) proper. Assume infinity may Woodin with a measurable above.

Then \(\mathcal{E}(\mathbb{R}) \) all classes \(\mathcal{E}^1 (\mathbb{R}^n, \mathcal{M}(\mathbb{R}^n)) \) then

then is \(C \subseteq I^+ \) s.t. \(\mathcal{E}(\mathbb{R}) \subseteq (\mathbb{R}^n, \Delta^1) \)
\((\text{Martin})\) \(AD_{\mathbb{R}}\). All trees on \(w \times \theta\) in \(\Theta\) are weakly homogeneous.

\((\text{Martin})\) \(AD + DC\). \(\forall A \subseteq \mathcal{P}_\omega \mathbb{R} \exists \alpha \in \text{On} \ \forall B \subseteq \mathcal{P}_\omega \mathbb{R} \ \alpha \in \text{Sushâ}} \rightarrow \text{Sushâ}}\).

\((\text{Woodin})\) \(AD_{\mathbb{R}}\) all \(A \subseteq \mathcal{P}_\omega \mathbb{R}\) are Sushâ

In \(AD_{\mathbb{R}} + DC\) all sets are homomorphic.

\((\text{Neeman - Norwood})\) \(ZF + DC + AD_{\mathbb{R}} + V = L(\mathcal{P}(\mathbb{R}))\)

\(A\) proper \(H \subseteq \mathcal{P}_\omega \mathbb{R}\) friend.

\(J : L(\mathcal{P}(\mathbb{R})) \rightarrow L(\mathcal{P}(\mathbb{R}))^{\mathcal{CH}}\)

does not move reals or ordinals.