EXTERNAL ULTRAPowers OF HoD BY

We assume \(V = L(R) + \text{AD} \)

Def. \(M \subseteq L(R) \) is an inner model and \(\mu \in L(R) \)
a measure on some ordinal.

Define external ultrapower of \(M \), \(\text{Ext}(M, \mu) \)
using all functions \(f \in V \).

\[J^M_{\mu} : M \rightarrow \text{Ext}(M, \mu) \]

If \(M = \text{AC} \) then \(J^M_{\mu} \) is fully elementary

Background: Woodin used internal ultrapowers
of HoD to show

\[\text{HoD} \models \exists \gamma \text{ is strong up to } \Theta \text{ in HoD} \]

Def. (Jackson) \(\mathcal{W}_1 \) is the club measure on \(\omega_1 \)

Will be studying \(J_{\mathcal{W}_1} : \text{HoD} \rightarrow \text{Ext}(\text{HoD}, \mathcal{W}_1) \).

Outline

1. \((\mathcal{W}_1, \mathcal{W}_2)\) - extends from \(J_{\mathcal{W}_1} \)
2. codes for cardinals less than \(\omega_2 \)
3. as much \(J_{\mathcal{W}_1} \) as I can
4. Global results
Review of Jackson-Ketlencid paper

(An initial segment property + Aron (compactness quantification)

1. \(\text{HOD is minimal} \)

\[M \vDash \text{min} \Leftrightarrow \forall N \text{ minimal iff a tenindle } \Theta \text{ s.t.} \]

\[(1) \ L[M^{\Theta^*}] = \varnothing \]

\[(2) \ \forall \gamma < \delta^\text{M} \ L[M^{\gamma}] = \varnothing \]

2. \(M, N \) are I.M. with minimal witnesses by \(\Theta \) and of \(M, N \) have comparison

\[P \leftarrow M \quad \rightarrow N \leftarrow Q \]

\[\text{no drop in either side} \]

\[\text{Below we} \]

The HOD and Ext (HOD, \(\omega_1 \)) have a successful comparison (Steel)

Notation \(\mu = \omega_1 \cap \text{HOD} \)

\[\text{Ult}^x(\text{HOD}, \mu) = \text{the } \alpha \text{-th } \text{ult} \]

\[\iota_x: \text{HOD} \rightarrow \text{Ult}^x(\text{HOD}, \mu) \text{ the embedding} \]
Then if $\text{HOD} \models P$

$\text{Ext} \models \varphi$

Then in the first w_2 steps the Ext does not move
while HOD decides φ.

w_2 is the least measurable. Analogously $\text{HOD} \models \psi$.

Thus let \mathcal{E} be (w_1, w_2)-extender derived from \mathcal{J}_{w_1}

and let $\{\mathcal{E}_x | x < z\}$ enumerate the generators. Let

$\mu_x = \text{the measure on } \mathcal{E}_x$ derived from

$\text{Ult}(\text{HOD}, \mathcal{E}) \rightarrow \text{Ult}(\text{HOD}, \mathcal{E})$

Thus

1. $\mathcal{E}_x = \mathcal{E}_x(w_1)$
2. $\mu_x = \mu_x(\mu)$

Lemma (3.12) Let \mathcal{M} be an ultrafilter of HOD.

Let $\kappa \in \mathcal{M}$ be an \mathcal{M}-cardinal st. there are

no total extenders overlapping κ. Let \mathcal{O} be a proper class. Then

$\mathcal{P}(\kappa)^\mathcal{M} \subseteq \text{Hull}(\mathcal{M}, (\kappa \cup \mathcal{O}))$

Proof: $\mathcal{M} \models \varphi$

$\text{Hull} \mathcal{M} \models \varphi$.

\square
Proof of Theorem

1. Fix $d < \omega_1$

 \[(i) \quad \beta \leq d \rightarrow \xi_\beta = \hat{\beta}(\omega_1)\]

 \[(ii) \quad \mu_\beta = \xi_\beta(\mu)\]

Verify for $d+1$:

Assume $\xi_{d+1} < \hat{d+1}(\omega_1)$

Now $\xi_{d+1} = \xi_{d+1}(d)$ (f_0^d)

where $f : \xi_d \rightarrow \xi_d$

f is definable in $\text{L}^{\omega_1}_d (\text{HOD}, \eta)$ from ordinals in Σ_1 when $\eta < d$,

as fixed by η and d. So $\xi_{d+1}(d)$ is definable in $\text{L}^{\omega_1}_d (\text{HOD}, \eta)$ from $\xi_\eta \cap \Sigma_1$ so ξ_{d+1} is definable in $\text{L}^{\omega_1}_d (\text{HOD}, \eta)$ from $\xi_\eta \cup \{ \xi \}$.

Point $\xi_{\alpha+1} = \tau(\bar{\beta})$ when $\bar{\beta}$ is fixed

by all maps. So

$\xi_{\alpha+1} = \tau^\alpha(\bar{\beta}) = \tau^\alpha(\bar{\beta}) = \xi_\beta(\mu_{\xi_\beta(\omega_1)}) > \xi_\beta(\omega_1)$

$\xi_\beta(\omega_1) \Rightarrow \xi_{\alpha+1}$
Assume \(A \in \mu_{\omega+1} \cap i_{\omega+1}(\mu) \).

Standard \(A = \tau \mu^{\omega+1}(\bar{\beta}) \) where \(\bar{\beta} \) is fixed by \(k \).

Then

\[i_\omega(\omega_1) \in k(A) = \tau \mathcal{E}xt(\bar{\beta}) \]
\[i_\omega(\omega_1) \not\in i_\gamma(A) = \tau \mathcal{P}(\bar{\beta}) \]

\[\text{exit } (i_\gamma) \rightarrow i_{\omega+1}(\omega_1) \]
\[i_{\omega+1}(\omega_1) \in i_\gamma(k(A)) = \tau \mathcal{Q}(\bar{\beta}) = \tau \mathcal{P}(\bar{\beta}) \]

Codes for ordinals \(\omega_1 \)

Fact (Martin): \(j_{\omega_1}^\omega(\omega_1) = \tau \omega_{\omega+1} \).

(essentially \(\delta_3 = \omega_{\omega+1} \))

So \(f: \omega_1 \rightarrow \omega_1 \); view \(f \) as coding \(\mathcal{C}(f) = \omega_1 \)

Question (1-1): Which ordinals are coded by \(f \)?

Det: \(f: \omega_1 \rightarrow \omega_1 \) "codes a gap" \(\omega_1 \)

\(\sup \{ f(\xi) | \xi \in \text{HOD} \} \subset \omega_1 \) \(\subset \mathcal{C}(f) \subset \omega_1 \) \(\subset \mathcal{C}(f) \).
Thus \(f : \omega \to \text{HOD} \) then \(f \) begins a gap.

Let \(\text{Ext} \) be extended that

Analyse \(k \). Let \(F \) be extend that comes from iterating \(\text{Ex} \) \(w_2 \) times.

Fact 1 \(\text{Ext} (\text{Ext} (HOD, \mu^2), F) = \text{Ext} w_{2+1} (HOD, \mu) \)

Proof \(\text{Ext} M \triangleright \text{Ext} (HOD, \mu^2) \)

\(\text{WTG} : \text{Ex} (M) \triangleright \text{Ext} (HOD, \mu) \)

\(\text{Ext} (HOD, \mu) \not\models M \) is an L.S. of \(\text{Ex} \) \(\mu \) by \(\text{Ex} (\mu) \)

Now apply \(F \).
Fact. For the $(\langle w_1, w_2 \rangle, \mu)$-extender defined from κ.

Proof.

Now run the argument as above using definability from a class of ordinals that are fixed. □

$\text{HOD} \cong \text{Ult}(\text{HOD}, \mu) \\
\text{Ult}(\text{HOD}, \mu) \cong \text{Ult}(\text{HOD}, \mu^+)$

f being a gap iff κ is discontinuous at $(\mu)^{\mu^+}$.

$\text{Ult}(\text{HOD}, \mu) = \text{Ult}(\text{HOD}, \mu^+)$ and $\omega_{\omega+1}(w_2) > \omega_{\omega+1}(w_1) > \omega_{\omega+1}(w_1)$.

So κ is discontinuous at $(\mu)^{\mu^+}$. □
Let \(\kappa \) be the least measurable of Mitchell order 1 in HOD and let \(\gamma = \sup J_{\kappa_1}[\kappa] \). We can analyze the \((\kappa, \gamma)\)-extend from \(J_{\kappa_1}\).

\[\begin{array}{cc}
\kappa & \text{the 2nd measurable} \\
F & \text{measures on same} \\
\kappa_2 & \\
\kappa_1 & \\
\kappa & \text{HOD} \\
\kappa & \text{for } \kappa_2 \\
\kappa_1 \text{ (HOD)} & \text{Ext} \\
\kappa_2 \text{ (HOD)} & \text{Ext} \\
\kappa_1 & \\
\end{array} \]

\(\kappa_2 \) is continuous at \(\kappa_2 \) while \(J_{\kappa_1} \) is not.