Say $V \models \text{ZFC}$.
$M \subseteq V$ is a ground for V if $\exists \text{Re } M \exists \text{ge } V \\& \text{ P-generic over } M \text{ s.t. } V = M[G]$.

The mantle of V is the intersection of all grounds. A bedrock is a ground which does not contain a further ground.

We will study the collection of grounds for extendible models. Such models have proper grounds only if they have Woodin cardinals.

- \mathcal{M}_λ: the mantle is the result of iterating the least measurable out of the universe

 - with G. Fuchs: Models without strong cardinals.

Let M_w be the least $L[E]$-model with a Woodin cardinal δ and a strong cardinal $\kappa > \delta$.

I want to describe its mantle.

Let η be a cutpoint of M_w with $\delta < \eta < \kappa$.
Now the least measurable above δ, $d \to \delta'$, and then start generically absorbing. Use generic reductions over $\mathbb{M}(\delta)$ to find \mathbb{Q}-structures, if they exist.

Case 2 If a \mathbb{Q}-structure exists, continue.

Case 1 If the \mathbb{Q}-structure does not exist, the last $P = \text{the result of generic reduction}$

$$P [\mathbb{M}_{\text{sw}} / \delta (\eta)] = \mathbb{M}_{\text{sw}}$$

Describe \mathbb{M}_{sw} of \mathbb{M}_{sw}.

In \mathcal{V}: Points in the system are all models $P = P^{\mathbb{M}_{\text{sw}}}(\mathbb{M}(\eta))$, e.

$$\delta (\eta) = \eta^+ \text{ for some cutpoint } \eta < \kappa$$

result of generic reduction.

Each P is good.

P' is above P in this system in \mathcal{V}, see that P' is an iterate of P, let $\pi_{P'}$ be the map.

$(\mathbb{M}_{\text{sw}}, \pi_{P'}) = \text{the abv him of the system}$
\(P \) is \(\omega \)-iterateable is a finite set of arithms \(\leq \) below \(\delta_0 \) for all \(\delta \) of limit length according to the "short tree fragment of \(\Sigma \) there is a branch \(T \) of \\

\[\Gamma_{\text{max}}(s) \rightarrow \Gamma_{\text{max}}(s)(y,s) \rightarrow \Gamma_{\text{max}}(x)(y,s) \] \\

Internal system consists of the same points \(P \), \(\omega \)-iterateable

The maps \(\pi_\mathcal{S} \), the usual fragments of \(\tau_{\mathcal{P}, \mathcal{P}} \), which

The internal system gives the same \(\mathcal{M}_\omega \).

Facts

- \(n \) is the least measurable of \(\mathcal{M}_\omega \).
- \(\delta_\omega > n^+ < n^+ \mathcal{M}_\omega < n^+ \mathcal{M}_\omega < n^+ \mathcal{M}_\omega \) \(\mathcal{M}_\omega \)

\[\mathcal{M}_{\text{sw}} = \mathcal{M}_\omega \] is fully iterateable in all generic definitions

\[\mathcal{M}_{\text{sw}} \rightarrow \mathcal{M}_\omega \rightarrow \mathcal{M}_\omega \]

Let \(\mathcal{M}_\omega = \mathcal{M}_\omega \) as defined in \(\mathcal{M}_\omega \)

\[\mathcal{M}_\omega = \pi_\mathcal{A}(\mathcal{M}_\omega) \]
Let $\rho \in \text{On}$. Let

$$
\rho^* = \min \{ \pi^s_{\rho_\alpha} (\rho) \mid \rho \text{ in the system } \pi^s_{\rho_\alpha} \text{ defined} \}
$$

ρ^* in \mathcal{M}_{ω_1}. Let

$$
\mathcal{V} = L[\mathcal{M}_{\omega_1}, \rho \mapsto \rho^*] = L[\mathcal{M}_{\omega_1}, \rho \mapsto \rho^* \cap S_{\omega_1}^0]
$$

$\rho^* = \pi^w_{\omega_1, \omega} (\rho)$, let $T_{\omega_1, \omega} (\rho) = \rho$ be suitable

$$
\rho^* = T_{\omega_1, \omega} (\rho) = T_{\omega_1, \omega} (\pi^w_{\omega_1, \omega} (\rho)) = T_{\omega_1, \omega} (\pi^w_{\omega_1, \omega} (\rho)) = T_{\omega_1, \omega} (\rho)
$$

Theorem (Sargsyan, Schindler)

$\mathcal{V} = L[\mathcal{M}_{\omega_1}, \rho \mapsto \rho^*]$ is the mantle of \mathcal{M}_{ω_1}

hence the least ground and also the birthcard

$$
\mathcal{G} \cap \text{On} \cap \text{Ord} = \text{HOD}_{\mathcal{M}_{\omega_1}}
$$

$\mathcal{H}^0_{\omega_1} = \mathcal{M}_{\omega_1} + S_{\omega_1}^0$ is Woodin in \mathcal{V}

also \mathcal{M}_{ω_1} is fully iterable in \mathcal{V}

Lemma \mathcal{V} is ground for \mathcal{M}_{ω_1}

Proof (this uses Buronsky's Theorem)

Claim \mathcal{V} uniform $\aleph^+ -$ count \mathcal{M}_{ω_1}, i.e.

$\forall \alpha \mapsto \text{On}, \alpha \in \mathcal{M}_{\omega_1} = \exists g \in \mathcal{V} \forall \alpha \in \text{On}

\text{den} (g) = \emptyset \quad (f(3) + g(3), |f(3)| < \alpha + \text{all } \beta) \quad \emptyset$

Then \mathcal{M}_{ω_1} is an \aleph^+-cc. extension of \mathcal{V}. (End)}