Continuing with the proof of Theorem 1

Case 3: No cutpoint in $(p, 0, \infty)$

Fact: For all good P, $P \not\in M_1 P$

$P \not\in M \Rightarrow E \in M$ (not necessarily on the M-sequence) s.t.

$\exists t(E) < p$ and E is p-strong

and $P \not\in \text{Ult}(M_{1+p}, E)$

Define N^ext: the stack of all such P where $N = M_1 P$

Proof: Farmer's dissertation

Case 4: otherwise p singular and there is a cutpoint in $(p, 0, \infty)$ but p is not a cutpoint.

Say x is a cutpoint of M in this interval.

Then it suffices to identify $M[x]$, and then proceed as in Case 2.

Identify $M[x]$: Given N a good pm, say N is strong iff N-hulls is well-defined and the domain of N-hulls is the same as domain (M) and every proper I.S. of N-hulls satisfies standard fine-structural condensation.
Claim: All strong N are segments of M.

Proof: P, Q are strong but not lined up. Define $P_0 = P$, $Q_0 = Q$.

$P_{w+1} =$ the least $P' \subseteq P^+Hull$ s.t. $Q_0 \in P \wedge P \cap P' = \emptyset$. $Q_{w+1} =$ defined dually.

Let P_w, Q_w be corresponding stacks. They have the same domain, denote them R.

E^{P_w} is definable in R from parameter P_0.

Because we can ran the definition of P^+Hull inside R.

Similarly for E^{Q_w}. Hence $\text{End}(P_w)$, $\text{End}(Q_w)$ have the same domain and $E^{\text{End}(P_w)}$ is Σ_1 in $\text{End}(Q_w)$ ($\{P_w/y\}$). Then for a cardinal $\eta < \rho$,

$$\text{Hull}_{\Sigma_1}(\eta \cup \{P, \text{End}(P_w)\}) = \text{Hull}_{\Sigma_1}(\eta \cup \{P, \text{End}(Q_w)\})$$

These collapse to P^+, Q^+ are 1-sound; since

$$P_1(\text{End}(P_w)) = P_1(\text{End}(Q_w)) \equiv \rho.$$

Take η be large enough s.t. P_w, Q_w are in these hulls so make these hulls equal and embed include solidity witnesses to $\text{End}(R)$-soundness.

By Σ_1-condensation $P^+, Q^+ \equiv M \! / \! P$. Now these hulls see the agreement/disagreement between P_w, Q_w.
Thus \mathcal{M} — Toward the proof.

\mathcal{M}-finite, ω_1 exists $\Rightarrow \omega_1$ exists and is \mathcal{M}-definable from $x \in \mathcal{M}$.

Claim 2: $x < \omega_1 \forall \mathcal{P}$

P ω-sound, projects to ω and $\mathcal{M} \vdash P$ and P is ω_1-iterable above $x \Rightarrow \mathcal{P} \in \mathcal{M} \upharpoonright \omega_1$

For $\mathcal{N} \models \mathcal{M} \upharpoonright \omega_1$ and \mathcal{P} s.t. $\mathcal{N} \models \mathcal{P}$ are ω_1-perm.
say that $(\mathcal{N}, \mathcal{P})$ is bad if $\mathcal{N} \upharpoonright \omega_1 \Vdash \mathcal{P} \upharpoonright \omega_1$

but $\mathcal{N} \not\models \mathcal{P}$ and \mathcal{P} is ω_1-iterable above ω_1.

(Note: \mathcal{N} is also ω_1-iterable)

Using Fact: Schindler-Steel, we want to compare $(\mathcal{N}, \mathcal{P})$. For \mathcal{N} as above define a partial ω_1-IS \mathcal{N}^* for \mathcal{N} using methods of Sch-St.

\mathcal{N} acts on trees \mathcal{T} s.t.

- $\mathcal{T} = \mathcal{L}^*(\mathcal{F}) < \omega_1$ limit
- \mathcal{T} around ω-maximal
- $\mathcal{T} = \mathcal{F} \upharpoonright \mathcal{T}$, then $\mathcal{M} \upharpoonright \mathcal{T}$ is \mathcal{B}_1-generic over $\mathcal{M} \upharpoonright \mathcal{T}$
- \mathcal{T} is definable over $\mathcal{M} \upharpoonright \mathcal{T}$ from parameters

Then $\mathcal{N}^*(\mathcal{T}) = \text{the unique c.w.f. branch of}$

$s.t. \mathcal{Q} \equiv \Phi \langle b, \mathcal{T} \rangle = \langle \varphi \rangle \text{ some } \varphi \in \mathcal{M}$
This works, as we always have a level of \(M \) above \(\delta (\nu) \) which projects to \(\nu \).

Compare bad pair \((\nu , \nu)\) using \((\lambda, \Sigma)\).

Here \(\Sigma \) is some \(\mu \)-strategy for \(P \).

Describe comparison on stages \(\langle \delta_\alpha \rangle_{\alpha < \chi_1} \) continuing.

\(\delta \) are exactly the Woodin of \(M (T, \nu) \) when

\(\chi \) is a successor ordinal.

\(\delta_0 = 0 \). To define \((T, \nu) \downarrow \delta_1 \)

Given \((T, \nu) \downarrow (\gamma + 1)\)

- Identify the least disagreement in extenders

\[\lambda_1 = \text{least } \lambda \text{ s.t.} \]
\[Q (\tau \downarrow \lambda, \Lambda (\tau (\lambda))) \neq Q (\nu \downarrow \lambda, \Sigma , \nu (\lambda)) \]

\[\delta_1 = \delta (\delta (T, \nu) \uparrow \chi_1) \Rightarrow \delta_1 = \chi_1 \]

Claim \((T, \nu) \uparrow \chi_1 \) is well-defined, i.e.

\[(T, \nu) \uparrow \chi_1 \text{ is a } \Lambda \nu \]