Theorem. Suppose \(n \) is supercompact, \(n < \lambda \) where \(\lambda \) is superstrong, and where an arbitrarily large Woodin cardinals. Assume UBH holds for "nice" iteration trees above \(n \). Then

(a) There is an \(\bar{\imath} \) that \((P, \Xi)\) s.t.

\[P \models \text{Theo is a superstrong cardinal.} \]

(b) There is a pointclass \(\Gamma \subseteq \text{Hec}_n \) s.t.

(i) \(\text{HOD}^{L(n,R)} \models \text{Hec}_n \) is a superstrong

(ii) \(A \in \Gamma \models \text{HOD}^{L(n,R)} \models "I \text{ am a \ellpm}" \)

\(\text{REM: UBH + \(n \) supercompact \(\Rightarrow \) V is uniquely iterable above \(n \) for stacks of normal trees. (Woodin)} \)

\(\text{REM: P as in (a) is given by a \ellpm \ construction on V} \)

\(\text{REM: P in (b) comes from IR - genericity iteration} \)

\(P \rightarrow \mathcal{Q} \) as \(D(\mathcal{Q}, < \lambda) \).

II. Normalizing well

2-step. Given \(M \) an \(\ellpm \), \(\mathcal{U}(F), \langle \lambda_E \rangle \models \text{UBH} \)

\[\text{Claim: } \frac{\mathcal{U}(F), \langle \lambda_E \rangle \models \text{UBH}}{\mathcal{N}} \]

\[\begin{array}{c}
\xrightarrow{i_E} \\
\rightarrow \\
F \rightarrow \mathcal{Q} \rightarrow R \\
{\text{4 comes from the shift lemma}}
\end{array} \]

\[\mathcal{V} \models \lambda_E = i_F^\mathcal{V} \lambda_E \]

\[\text{so } F = E_4 \mathcal{H}(F) \]

\[\text{so: } \mathcal{V} = \sigma \circ i_E \]
Here we avoid dropping cases to keep the complexity low.

For $T = \langle E \rangle, U = \langle F \rangle$:

$W(T, U) = \langle E, F, i^M_F(E) \rangle$ (if $h_U(F) > h_L(E)$)

Have: $\sigma_0: \text{last of } U \rightarrow \text{last of } W(T, U)$

$\sigma_0: \langle T, U \rangle = \langle W(T, U) \rangle$

Case 2: $c_U(E) < c_U(F) < \lambda_E$

\[\begin{array}{c}
\xymatrix{n & \sigma(T) \ar[r] & T \ar[r] & \langle E, F, i^M_F(E) \rangle \\
M & \ar[r]^{i^M_E(F)} & \ar[r]^{i^M_E(F)} & \end{array} \]

\[\begin{array}{c}
4 \text{ again comes from the shift lemma.} \\
4(\{a_t^+\}_{t \in E}) = \{i^M_E(F), f\}_t^{i^M_F(E)}
\end{array} \]

$W(\langle E \rangle, \langle F \rangle) = \langle E, F, i^M_F(E) \rangle$

REM: W is called the embedding normalized σ of $\langle T, U \rangle$.

There is also a full normalized in $X(T, U)$ with last model Q. Here e.g. in Case 1 use $i^N_E(E)$, not $i^M_F(E)$. $i^N_E(E)$ is on the sequence of P by condensation, so this is most useful in developing the theory as it is the end product.

Now given T normal on M and F with $n = c_U(F)$,
Define \(W(T, F) \) for \(F \) on the sequence \(M_{\beta} \); here \(\mathcal{F} \) is normal on \(\mathcal{M} \). Let
\[
\beta \mapsto \beta^* \quad \text{s.t.} \quad \nu < \chi(\mathcal{E}^\beta) = \text{the least } \nu \text{ s.t. } \nu < \chi(\mathcal{E}^\beta)
\]
\[
\delta = \text{least } \delta \text{ s.t. } F \in \mathcal{M}^\delta \text{ on the sequence of } M_{\beta}.
\]

Assume
\[
M^\beta_{\beta} = M^\gamma_{\beta}, \quad \mathcal{T}^\beta_{\beta+1} = \mathcal{Y}^\beta_{\beta+1}
\]
\[
\beta \leq \delta, \quad \mathcal{E}^\beta \text{ exists } \implies \text{dom}(F) \subseteq \chi(\mathcal{E}^\beta). \text{ Then}
\]
\[
W(T, F) = \mathcal{Y}^{(\delta + 1)}(F) \implies \mathcal{F}^\gamma, \quad \gamma \geq \beta
\]

Define:
\[
\phi(\beta) = \begin{cases}
\mathcal{E}^\beta & \forall \beta < \delta \\
(\delta + 1)^{\gamma-\beta} \quad \forall \beta \leq \delta \leq \Theta
\end{cases}
\]

Here \(\Theta + 1 = \text{lh}(T) \).
Define \(\pi_j : m_j^\sigma \rightarrow m_j^\nu \) as we do.

\(\pi_j = \text{id} \) for \(j < \beta \).

\[m_{\alpha+1}^\nu = \text{hlt} (m_{\beta}^\nu, \varphi(\beta)) \quad (\text{Non-dropping case}) \]

\(\pi_\beta : m_\beta^\sigma \rightarrow m_\beta^\nu \) canonical embedding.

For \(\gamma \geq \beta \), \(\eta = \text{pred}(\beta+1) \) we let

\[E_\gamma^\nu = \pi_\beta (E_\gamma^\sigma) \]

(a) \(\alpha (F) \leq \alpha (E_3^\sigma) \)

\[w \text{-pred} (\varphi(\beta+1)) = \varphi (\text{pred}(\beta+1)) \]

\[m_{\varphi(\beta+1)}^\nu = \text{hlt} (m_{\varphi(\gamma)}^\nu, E_{\varphi(\gamma)}^\nu) \]

\[\pi_{\beta+1} : m_{\beta+1}^\sigma \rightarrow m_{\varphi(\beta+1)}^\nu \quad \pi_{\beta+1} [\varphi, t] = [\pi_{\beta+1} \varphi, t_{\beta+1}] \]

(b) \(\alpha (F) > \alpha (E_3^\sigma) \)

Then \(\gamma \leq \beta \). Then \(w \text{-pred} (\varphi(\beta+1)) = \gamma \).

\(\pi_\beta \)'s commute with embeddings of \(T(W) \).

So can define \(\pi_\lambda : m_\lambda^\sigma \rightarrow m_\lambda^\nu \)

\[\varphi(\lambda) \]
Warning: Not always true that \(g(T - \text{pred}(i+1)) = w - \text{pred}(\text{pred}(i+1)) \).

For \(U \) a normal tree and \(n+1 \leq lH(U) \):

\[S^U \]

For \(U \) a normal tree and \(n+1 \leq lH(U) \):

\[S^U \]

\[\text{Branch extender} \]

\[\text{For } U \text{ a normal tree and } n+1 \leq lH(U) \text{, the sequence of branch extenders used in } U \text{ getting to } M^U \]

\[\text{Vert} = \{ \}

\[\text{C} \]

\[\text{F}(C) \]

\[\text{C} \]

\[\text{F}(U) \]

\[\text{C} \]

\[\text{F}(H) \]