Assume: $AD^+ + 7ADR$

+ HPC Given a Suslin-co-Suslin set A, there is a (P, Σ) above A in \mathcal{N} (not pair compatible)

+ Sh-MC

From last time: There is a pair (P, Σ) s.t.

1. P is a b.p.m. with last block $(\mathfrak{b}, \mathfrak{d})$

2. Σ is short-tree strategy of P

 Σ is a partial \mathcal{N} for P with strong hill condensation and more full normalisation. Also if Σ extends (\mathcal{E}_i),

 $l = \Sigma(9)$ is defined. As $l \leq 3$

 (1) $\Sigma(3)$ short all \mathcal{E}_i's.

 (2) $\Sigma(3)$ drops on all $(\mathfrak{d}_i, \mathfrak{b}_i)$. (2)

3. The claim $M(P, \Sigma)$ extends $\text{HOD} + \kappa$

 κ is the largest Suslin cardinal, and if $i : \mathfrak{b} \rightarrow M(P, \Sigma)$

 is the induction map then $i(\mathfrak{b}) = \mathfrak{b}$. $(\Rightarrow) \Sigma$ is κ-Suslin

Why? Σ_1-reflect the statement "There is no such (P, Σ)" to some uncounte $\mathcal{N} = \mathcal{E}^+ + DC + \text{HPC} + \ldots + "\text{No such} (P, \Sigma)"$

\mathcal{N} is coded by $\text{Set} A$ which is Suslin-co-Suslin

Let $(N^p, \mathfrak{d}, \Sigma, N^p, \Sigma')$ be a \mathcal{N}-Woodin universe for some

inductive-like scaled $\mathcal{N} > N$. Wants to show

$(N^p, \mathfrak{d}, N, \Sigma)$ captures a good pair (P^*, Σ^*) s.t.

$\Sigma^* \notin N$, $\Sigma^* \text{ HPC}$
Do a HMC construction in \mathbb{N}^*. Let $(p, \mathcal{E}) = (N_{\omega_1}, R_{\omega_1})$

$$(\mathcal{N}_{\omega_1}, R_{\omega_1}, 1 \mathcal{E}_{\omega_1} \subseteq (\mathbb{E}_{\omega_1})^{\omega_1})$$

be least $\xi \in \mathcal{E} \cap \mathbb{N}$. Or take (p, \mathcal{E}) be the ξ^*-least $\xi \in \mathcal{E} \cap \mathbb{N}$. Then repeat the argument from the last time \mathbb{Q}

SHORT TREE STRATEGY PREMISE

Fix (p, \mathcal{E}) a short tree pair \quad P countable

$p^+ \vdash K \text{ is prem } \forall$

$$p^+ = (1 p^+ 1, B^{p^+} \subseteq \mathcal{E}^{p^+}, \mathcal{E}^{p^+})$$

and there is a sequence $(d_i)_{i \in \mathfrak{I}}$ of ordinals s.t. TFH:

- $\mathcal{E}^{p^+}, \mathcal{E}^{p^+}$ code extenders as usual
- \mathcal{E}^{p^+} codes Σ
- $B^{p^+} \cap d_i = \emptyset$
- if $B^{p^+} \cap d_i$ then $B^{p^+} \cap d_i$ codes a branch b for $\Sigma \in p^+ \times \mathcal{E}^{p^+}$ according to \mathcal{E}, $\mathcal{E}(\mathcal{E}) = b$ and $(9, 8)$, is the result of iterating P into the HML $\mathcal{C}^{(*)}$ of $p^+ \mathcal{E}$ f. a. $\delta \prec \mathcal{E}$.
- d_i's are cutpoints of p^+

$(*)$ $p^+ \mathcal{E}$ knows how to create its initial segment b.c. the \mathfrak{E}-structures are given by $\mathfrak{E} \subseteq p^+ \mathcal{E}$
Let (P,Σ) be a short tree pair s.t. letting

\[q : P \rightarrow M_0(P,\Sigma) \text{ be the direct limit map, } i(q(P)) = k. \]

Def (1) For a set x, let

\[L^\Sigma(x) = \text{the union of all } \Sigma \text{-pm over } x \text{ that project to } x \]
and are sound.

(2) MC(Σ) : for every real a in \mathcal{M}, $a \in HC$

\[\forall b \leq a \exists \delta \in OD, \delta(\varepsilon) = \delta(a) \wedge L^\Sigma(\delta) \]

(3) sh-MC : for every (P,Σ) as in \mathcal{M}, $MC(\Sigma)$ holds.

Def Let (P,Σ) be as in \mathcal{M}. For $P^+ \Sigma$-p.m., we say that P^+ is Σ-suitable if

- for all ε in P^+, $P^+ \varepsilon = \delta$ is Woodin + δ is a cardinal.
- if ε is a strong endpoint of P^+ then

\[P^+ | P^+ = L^\Sigma(P^+ | \varepsilon) \]
- if $\varepsilon \in \delta$, then $P^+ \varepsilon$ is not Woodin.
- $P^+ = L^\Sigma(P^+ | \delta_{m-1})$

End of Def

Let $B(P,\Sigma)$ = the set of all $A \in L$

- A is OD
- If $(P,\Sigma) \vDash (P,\Sigma)$ then $PA(P,\Sigma) \in R$

Either both P,Σ maximal or else neither short and

$$2(\varepsilon), \Sigma(x) \text{ don't drop}$$
Let (π, σ) be as above. Let $A \in \mathbb{R}(\pi, \sigma)$.

- We say that P^+ is A-iterable if short tree iterable off then is a partial is σ^+ on P^+ extending σ such that for there A-iterate P:
 \[\sigma^+ (\pi) \text{ is defined if } Q (\pi) \text{ exists and } Q (\pi) \sqsubseteq \mathcal{L}_{\pi} (\pi (\pi))\]
 Similar definition for the tree of the form $\pi^+ \pi$ when
 - π is P according to σ
 - σ is above $\pi (\pi)$

- P^+ is A-iterable off P^+ is short tree iterable and there are terms $\tau_{A, k}^+$ for $\text{Coll}(\omega, (\sigma + k)^+) \in P^+$ s.t.
 given a tree T on P^+ with least model $< (\pi, \rho^+) >$ (this always makes sense for maximal trees):
 1. if T (according to σ) is short and $b = \sigma^+ (\sigma)$ does not drop then $\tau_{b}^+ (\tau_{A, k}^+) = \tau_{A, k}^+$ all k.
 2. if T is maximal then there is brand b s.t.
 \[\tau_{b}^+ (\tau_{A, k}^+) = \tau_{A, k}^+ \quad \text{all } k\]
 3. in (1), (2):
 \[\sigma_{A, k}^+ \equiv A (\omega, \sigma_{A, k}^+) \uplus Q^+ (\sigma_{A, k}^+)\]
 whenever $\sigma \leq \text{coll}(\omega, (\sigma + k)^+) \equiv \text{generic } Q^+$

- P^+ is strongly A-iterable if P^+ is A-iterable and for any two trees $P^+ \Rightarrow Q^+$ which are A-iterations we have:

\[\tau_{P^+} \Rightarrow \tau_{Q^+}\]
If $\tilde{\tau}, \tilde{\omega}$ exist then for all z:
\[z_{A_k}^{p^+} \in \tilde{\omega} \cup \tilde{\tau} \cap \text{Hull}_{A_k}^{p^+} \]

where
\[\text{Hull}_{A_k}^{p^+} = \text{Hull}_{A_k}^{p^+} (\tilde{\tau} \cup \tilde{\omega}^{p^+}) \]
\[\tilde{\omega}^{p^+}_A = \sup (\text{Hull}_{A_k}^{p^+} (\tilde{\tau} \cup \tilde{\omega}^{p^+}) \cap \delta^+ \rho) \]

Note: For maximal trees $\pi_1 \tilde{\omega}$ in place of stacks $\pi_1 \tilde{\omega}$
this is automatic.

Let \mathcal{G} be the set of all $(p_1 \xi, p^+, \tilde{\omega})$ s.t.
\[(p_1 \xi) \text{ as in } G, p^+ \text{ is } (q, \rho) \text{-suitable}, \]
\[\tilde{\omega} \in \mathcal{B}_G(p_1 \xi) < \omega \text{ and } p^+ \text{ is strongly } A \text{-iterable} \]

\[(p_1 \xi, p^+, \tilde{\omega}) \leq^G (\alpha, \lambda, q^+, \tilde{\omega}) \cap \mathcal{G} \]

- \[\tilde{\omega} \leq \tilde{\omega}^* \]
- \[(\alpha, \lambda, q^+) \text{ is an } \tilde{\omega} \text{-iterate of } (p_1 \xi, p^+) \text{ and} \]
- \[\text{if } \tilde{\omega} \text{ witnesses this: } \tilde{\omega}^*_\xi = \lambda \]

\textbf{Want to prove:}

1) \[V = L_{\xi}^{\mathcal{G}} (\mathbb{R}) \text{ for any short tree pair } (p_1 \xi) \text{ as in } G \]

2) \[\text{For all } A \in \mathcal{B}_G(p_1 \xi) \text{ there is a } p^+ \text{ which is strongly } A \text{-iterable} \]

3) \[\text{Let } M \omega = \text{lim } (\mathcal{F}, \leq^G) \text{. Then } M \omega \models \text{HOD } \Theta \]