1) (5 pts) Determine whether or not the vector field is conservative. If it is, find the potential function.
\[\mathbf{F}(x, y) = \langle y \cos x, \sin x - y \rangle \]

We could start by noticing that \(\mathbf{F}(x, y) = \langle y \cos x, \sin x - y \rangle = \langle M(x, y), N(x, y) \rangle \) could be conservative, because \(M_y = \cos x = N_x = \cos x \).

Next, if there were a potential function, \(f(x, y) \), then \(\nabla f = \mathbf{F} \). In other words, \(f_x(x, y) = y \cos x \) and \(f_y(x, y) = \sin x - y \). Solving for the function, \(f(x, y) = \int M \, dx = \int y \cos x \, dx = y \sin x + G(y) \). We also know that the \(y \)-partial of this function has to be \(N(x, y) \), so \(f_y(x, y) = \sin x + G'(y) = N(x, y) = \sin x - y \). Solving for the unknown function, \(G'(y) = -y \). \(G(y) = \int G'(y) \, dy = \int -y \, dy = \frac{1}{2} y^2 + c \) (where \(c \) is some unknown constant).

Thus the potential function is \(f(x, y) = y \sin x + \frac{1}{2} y^2 + c \)

We can verify this answer by noting that \(\nabla f = \mathbf{F} \). Because there is a potential function for this vector field, the vector field is conservative.

2) (5 pts) Evaluate the line integral:
\[\int_C (2x - y) \, ds \]

Where \(C \) is the quarter circle from \((2,0)\) to \((0,2)\) centered at the origin.

A parameterization for this path is \(\mathbf{γ}(t) = \langle 2 \cos t, 2 \sin t \rangle \) where \(0 \leq t \leq \frac{\pi}{2} \).
\[\mathbf{γ}'(t) = \langle -2 \sin t, 2 \cos t \rangle \] so \(\| \mathbf{γ}'(t) \| = \sqrt{4 \sin^2 t + 4 \cos^2 t} = \sqrt{4 (\sin^2 t + \cos^2 t)} = 2 \).

We are integrating the function \(f(x, y) = 2x - y \), so
\[
\int_C f \, ds = \int_0^{\pi/2} f(\mathbf{γ}(t)) \| \mathbf{γ}'(t) \| \, dt = \int_0^{\pi/2} \left(2(2 \cos t) - (2 \sin t) \right) \frac{2}{\sqrt{4}} \, dt = 4 \int_0^{\pi/2} (2 \cos t - \sin t) \, dt
\]
\[= 4 \left[2 \sin t + \cos t \right]_0^{\pi/2} = 4 (2 - 1) = 4 \]