Math 2E Lec A Quiz 4

Solution

1) (4 pts) Compute the integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x, y, z) = \langle z, 0, 3x^2 \rangle$ and C is the quarter-ellipse parameterized by $\gamma(t) = \langle 2\cos t, 3\sin t, 1 \rangle$ from t = 0 to $t = \frac{\pi}{2}$.

$$\mathbf{F}(\gamma(t)) = \langle 1, 0, 12\cos^2(t) \rangle \text{ and } \gamma'(t) = \langle -2\sin t, 3\cos t, 0 \rangle \text{ so}$$

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{\pi/2} \mathbf{F}(\gamma(t)) \cdot \gamma'(t) dt = \int_{0}^{\pi/2} \langle 1, 0, 12\cos^2(t) \rangle \cdot \langle -2\sin t, 3\cos t, 0 \rangle dt$$

$$= -2 \int_{0}^{\pi/2} \sin t \, dt = 2 \left[\cos t \right]_{0}^{\pi/2} = 2(0-1) = -2$$

2) (6 pts) Compute $\int_C \sin y \, dx + (2 + x \cos y) \, dy$ where C is the part of the curve $y = \pi x^5$ running from (0,0) to $(1,\pi)$.

First the intended approach: The vector field in this integral is $\mathbf{F}(x, y) = \langle \sin y, 2 + x \cos y \rangle = \langle M, N \rangle$. Note that $M_y = \cos y = N_x$ so the vector field could be conservative. We try to solve for the potential function: $f(x, y) = \int M dx = \int \sin y dx = x \sin y + G(y)$. We now take the y partial: $f_{y}(x, y) = x \cos y + G'(y) = N = 2 + x \cos y$ so G'(y) = 2. Now $G(y) = \int 2 dy = 2y + c$, so $f(x, y) = x \sin y + 2y + c$. The choice of constant doesn't affect our later calculations, so we can take c = 0, leaving us with the potential function $f(x, y) = x \sin y + 2y$. This vector field has a potential function, so it is conservative. Now we can apply the fundamental theorem of line integrals:

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = f(1,\pi) - f(0,0) = (\sin \pi + 2\pi) - 0 = 2\pi$$

If we hadn't noticed that the vector field was conservative, we would get an unreasonably tricky integral: $\gamma(t) = \langle t, \pi t^5 \rangle$ (where $0 \le t \le 1$) so $\gamma'(t) = \langle 1, 5\pi t^4 \rangle$ and $\mathbf{F}(\gamma(t)) = \langle \sin(\pi t^5), 2 + t \cos(\pi t^5) \rangle \text{ so:}$ $\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{1} \mathbf{F}(\gamma(t)) \cdot \gamma'(t) dt = \int_{0}^{1} \langle \sin(\pi t^{5}), 2 + t \cos(\pi t^{5}) \rangle \cdot \langle 1, 5\pi t^{4} \rangle dt$ $= \int_{0}^{1} \left(\sin \left(\pi t^{5} \right) + 5\pi t^{4} \left(2 + t \cos \left(\pi t^{5} \right) \right) \right) dt = \int_{0}^{1} \left(\sin \left(\pi t^{5} \right) + 10\pi t^{4} + 5\pi t^{5} \cos \left(\pi t^{5} \right) \right) dt$ $= \int_0^1 10\pi t^4 dt + \int_0^1 \sin(\pi t^5) dt + \int_0^1 \underbrace{t}_u \underbrace{\left(5\pi t^4 \cos(\pi t^5)\right)}_{t} dt \quad \text{(integration by parts)}$ $= 2\pi + \int_{0}^{1} \sin(\pi t^{5}) dt + \left[t \sin(\pi t^{5})\right]_{0}^{1} - \int_{0}^{1} \sin(\pi t^{5}) dt = 2\pi$