Sample solution: Book, Exercises for Section 15.6, problem 50.

I give only main points, please fill in the details.

The surface S is the portion of the plane x + 2y + z = 4 above the region in the xy-plane bounded by $y = x^2$ and y = 1; denote this reagion by A. The density is given by $\rho(x, y, z) = y$.

Draw the picture. The region A in the xy-plane has the following bounds: $-1 \le x \le 1$ and $x^2 \le y \le 1$. The surface is given by function f(x,y) = z, i.e. f(x,y) = 4 - x - 2y so the evaluation formula (2) from the "brief guide" can easily be used. (And seems to be more appropriate for this problem.)

We have $f_x(x, y, z) = -1$ and $f_y(x, y, z) = -2$ so $1 + f_x^2 + f_y^2 = 6$. Hence the mass M is given by

$$M = \int \int_{A} \rho(x, y, z) \sqrt{1 + f_{x}^{2} + f_{y}^{2}} \, dx dy = \int \int_{A} y \sqrt{6} \, dx dy = \sqrt{6} \int_{-1}^{1} \int_{x^{2}}^{1} y \, dy dx$$

The last integral is easy to evaluate.

Next we compute the center of mass $(\bar{x}, \bar{y}, \bar{z})$ of S. Recall that \bar{x} is given by M_x/M where

$$M_x = \int \int_A x \rho(x, y, z) \sqrt{1 + f_x^2 + f_y^2} \, \mathrm{d}x \mathrm{d}y$$

and \bar{y}, \bar{z} are computed similarly. I will only compute \bar{x} and leave the computation of \bar{y}, \bar{z} to you as exercise. By substituting into the formula above:

$$M_x = \int \int_A xy\sqrt{6} \, \mathrm{d}x \mathrm{d}y = \sqrt{6} \int_{-1}^1 \int_{x^2}^1 xy \, \mathrm{d}y \mathrm{d}x$$

and the last integral is easy to evaluate.