MATH 13 WINTER 2017 PRACTICE PROBLEMS

FOR FINAL EXAM

- 1. Problems on compositions of relations, images and inverse images. Assume R is a binary relation from A to B and S is a binary relation from B to C.
 - (a) Assume $X \subseteq A$. Prove that $S \circ R[X] = S[R[X]]$.
 - (b) Assume $X, Y \subseteq A$. Prove that $R[X \cup Y] = R[X] \cup R[Y]$.
 - (c) Assume $X, Y \subseteq A$. Is $R[X \cap Y] \subseteq R[X] \cap R[Y]$? Is $R[X] \cap R[Y] \subseteq R[X \cap Y]$? In either case give a proof supporting your conclusion.
 - (d) Prove that $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$.
- **2.** Assume $f: A \to B$ be a function.
 - (a) Assume $Y \subseteq B$. Prove that $f[f^{-1}[Y]] = Y$.
 - (b) Assume $X \subseteq A$. Prove that $X \subseteq f^{-1}[f[X]]$. Give an example of a set $X \subseteq A$ such that $X \neq f^{-1}[f[X]]$.
 - (c) Assume $X, Y \subseteq B$. Prove that

$$f^{-1}[X \smallsetminus Y] = f^{-1}[X] \smallsetminus f^{-1}[Y]$$

Given example of a function $f:A\to B$ and sets $X,Y\subseteq A$ such that $f[X\smallsetminus Y]\neq f[X]\smallsetminus f[Y].$

(d) Assume f is injective and $X, Y \subseteq A$. Prove that

$$f[X \setminus Y] = f[X] \setminus f[Y]$$

- **3.** Assume $f: A \to B$ and $g: B \to C$ are functions.
 - (a) Assume $g \circ f$ is injective. Prove that f is injective. Does it follow that g is injective? If so, prove this. If not, give an example of a function $g: B \to C$ which is not injective, but the composition $g \circ f$ is injective.
 - (b) Assume $g \circ f$ is surjective. Prove that g is surjective. Does it follow that f is surjective? If so, prove this. If not, give an example of a function $f:A \to B$ which is not surjective, but the composition $g \circ f$ is surjective.
 - (c) Assume g is injective. Prove that for any two functions $h:A\to B$ and $h':A\to B$ the following holds.

$$g \circ h = g \circ h' \implies h = h'$$

(d) Assume for any two functions $h:B\to C$ and $h':B\to C$ the following holds.

$$h \circ f = h' \circ f \implies h = h'$$

Prove that f is surjective.

- 4. The next exercises are on induction and the well-ordering principle.
 - (a) Prove by induction on $n \geq k$ that the set

 C_k^n = the collection of subsets of $\{1,\ldots,n\}$ which have k elements

has

$$\frac{n!}{k!(n-1)!}$$

elements.

(b) Prove by induction on $k \leq n$ that the set

$$V_k^n$$
 = the collection of all functions $f: \{1, \ldots, k\} \to \{1, \ldots, n\}$

has n^k elements.

(c) Prove by induction on n that if A is a set with n elements then the set

$$P_n^A$$
 = the collection of all bijections $f:\{1,\ldots,n\}\to A$

has n! elements

- (d) Prove using the well-ordering principle that every number $n \in \mathbb{N} \setminus \{1\}$ is divisible by a prime.
- 5. The next exercises are on equivalence relations and partitions.
 - (a) Consider the binary relation \sim on \mathbb{R}^2 defined by

$$(x,y) \sim (x',y') \iff \max(|x|,|y|) = \max(|x'|,|y'|)$$

Here $\max(r, s)$ is the larger of the numbers r, s.

- (i) Prove that \sim is an equivalence relation on \mathbb{R}^2 .
- (ii) Determine the equivalence classes $[(0,0)]_{\sim}$ and $[(0,1)]_{\sim}$. Describe in words what geometric objects are these equivalence classes. Draw a picture.
- (iii) Describe in words what is the partition \mathbb{R}^2/\sim .
- (b) Consider the binary relation \sim on $\mathbb{R} \times [0, \infty)$ defined by

$$(x,y) \sim (x',y') \iff \mathsf{distance}((x,y), \mathsf{axis}\ x) = \mathsf{distance}((x',y'), \mathsf{axis}\ x)$$

Here recall that the distance of a point (x, y) from a line ℓ is defined as the distance of points $(x, y), (x^*, y^*)$ where (x^*, y^*) is the intersection of the line ℓ with the line perpendicular to ℓ which contains the point (x, y). (Draw the picture!)

- (i) Prove that \sim is an equivalence relation on $\mathbb{R} \times [0, \infty)$.
- (ii) Determine the equivalence classes $[(0,0)]_{\sim}$ and $[(0,1)]_{\sim}$. Describe in words what geometric objects are these equivalence classes. Draw a picture.
- (iii) Describe in words what is the partition $\mathbb{R} \times [0, \infty) / \sim$.
- (c) Consider the set $V = \mathbb{R}^2 \setminus \{(0,0)\}$. Thus, V is the set of all points of the plane except the origin. We view such points as non-zero vectors. Consider the binary relation \sim on V defined as follows.

$$(x,y) \sim (x',y') \iff (x',y') = (\alpha \cdot x, \alpha \cdot y) \text{ for some } \alpha \in \mathbb{R}^+$$

- (i) Prove that \sim is an equivalence relation on V.
- (ii) Determine the equivalence classes $[(1,0)]_{\sim}$, $[(1,1)]_{\sim}$ and $[(0,1)]_{\sim}$. Describe in words what geometric objects are these equivalence classes. Draw a picture.
- (iii) Describe in words what is the partition V/\sim .
- (d) Consider the set $F = \{f \mid f : \mathbb{R} \to \mathbb{R}\}$. Consider the binary relation \sim on F defined by

 $f \sim g \iff$ there exist only finitely many $r \in \mathbb{R}$ such that $f(r) \neq g(r)$.

(i) Prove that \sim is an equivalence relation on F.

- (ii) Determine the equivalence classes $[c_0]_{\sim}$, where c_0 is the constant function with value 0, and $[\mathsf{id}_{\mathbb{R}}]_{\sim}$ where $\mathsf{id}_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}$ is the idenity function defined by $\mathsf{id}_{\mathbb{R}}(r) = r$.
- **6.** Recall that two sets are equinumeros iff there is a bijection between them, and a set is countable iff it is equinumeros with \mathbb{N} .
 - (a) Let

$$A = \{ a + b\sqrt{n} \in (0,1) \mid a, b \in \mathbb{Q} \land n \in \mathbb{N} \}$$

Prove that A is countable.

(b) Let

$$A = \{ x \in \mathbb{R} \mid \sin(\alpha \cdot x) = 0 \ \land \ \alpha \in \mathbb{Q} \}$$

Prove that A is countable.

- (c) Let $r, s \in \mathbb{R}^+$. Prove that the intervals (0, r) and (0, s) are equinumeros by constructing an explicit bijection.
- (d) Consider the following geometric objects in plane.
 - -S is the "empty square" consisting of lines (0,0),(1,0),(1,1),(0,1),
 - -T is the "empty square" consisting of lines (0,0),(2,0),(2,2),(0,2). Prove that S,T are equinumeros by constructing an explicit bijection.