1. (5pt) Prove that if x, y are arbitrary integers then $x^2 y + xy^2$ is an even number.

 Remark. One option is to do a proof by cases.

2. (5pt) In the class we gave a proof that if a is an integer then there are at most one integer q and at most one integer r such that

 (i) $0 \leq r < 5$, and
 (ii) $a = 5 \cdot q + r$
We then formulated a general result with an integer \(b > 1 \) in place of 5.

Formulate this general result with \(b \) in place of 5 again, and then give a proof of the general result, which mimics the proof with number 5 in the lecture. Write the proof carefully. There are one or two spots in the proof which require a little bit more care than the special case with \(b = 5 \).

3. (5pt) In the lecture we proved, using induction on \(n \), that if \(n \geq 5 \) is an integer and \(A \) is a set with \(n \) elements, then

- there exist precisely \(\frac{n!}{5!(n-5)!} \) subsets of \(A \) which have exactly 5 elements.

Prove by induction on \(n \) the following generalization of this result, where number 5 is replaced with some arbitrary \(k \geq 0 \):

- there exist precisely \(\frac{n!}{k!(n-k)!} \) subsets of \(A \) which have exactly \(k \) elements.

Again, try to mimic the proof with number 5 from the lecture.

4. (5pt) In the lecture we proved, using strong induction, the following statement:

\((*)\) Every integer larger than 1 is divisible by a prime number.

We say that an integer \(n \) is a **product of primes** iff there exist some integer \(k > 0 \) and prime numbers \(p_1, \ldots, p_k \) such that \(n = p_1 \cdot p_2 \cdot \ldots \cdot p_k \). Notice in particular that it is allowed that \(k = 1 \), so every prime number is a product of primes in the above sense. Notice also that the primes \(p_1, \ldots, p_k \) are **not** required to be distinct.

Use strong induction to prove the following statement, which is a strengthening of \((*)\) above:

\((***)\) Every integer larger than 1 is a product of primes.