MATH 13 FALL 2019 MIDTERM PRACTICE PROBLEMS

Below are some sample problems similar to those which will be given on the midterm.

- 1. Here we consider sets $A, B, C \subseteq U$ where U is a universal set.
 - (a) If $A \subseteq B$ determine the relationship between A^c and B^c .
 - (b) If $A \triangle B \subseteq C$ determine the relationship between $A \setminus C$ and $A \cap B$.
 - (c) Determine $\mathcal{P}(A) \cap \mathcal{P}(A^c)$.
 - (d) Is $\mathfrak{P}(A) \cup \mathfrak{P}(A^c) = \mathfrak{P}(U)$?
 - (e) Is $\mathfrak{P}(A) \setminus \mathfrak{P}(B) \subseteq \mathfrak{P}(A \setminus B)$?
- 2. Express the following statements in the symbolic language using symbols as instructed in Problem group 1 and then negate the statement. Use only symbols $=,<,\leq$ and arithmetic operations like $+,-,\cdot$ and similar. In (e) consider a set $A \subseteq \mathbb{Q}$.
 - (a) Every positive integer can be expressed as a sum of three squares of integers.
 - (b) For every real number r the equation 8x + r = 0 has precisely one real solution.
 - (c) There are at least three different integers in the interval (-2, 2).
 - (d) For every real number x larger than 1 the value 1/x is smaller than 1 but larger than 0.
 - (e) Between any two distinct integers there is an element of A.
- **3.** Prove the following statements. In each case choose a suitable type of proof.
 - (a) If a, b are odd integers then $a^2 b^2$ is divisible by 4.
 - (b) If p is an odd integer then the equation $x^3 + x + p = 0$ does not have an integer solution.
 - (c) If a, b are integers divisible by an integer n then the product $a \cdot b$ is divisible by n^2 .
 - (d) If a, b, c, d are four consecutive integers then the sum a + b + c + d is even.
 - (e) The product of three consecutive integers is always divisible by 6.
- **4.** Prove the following by induction on n.
 - (a) For each n > 0, $1^3 + 2^3 + \cdot + n^3 = \frac{1}{2}n^2(n+1)^2$. (b) For each n > 0, $17^n 13^n$ is divisible by 4.

 - (c) For every n > 0, $1 + a + a^2 + \cdots + a^n = (a^{n+1} 1)/(a 1)$. (d) For every n > 0, $a^n b^n = (a b)(a^{n-1} + a^{n-1}b + \cdots + a^{n-k}b^k + \cdots + b^{n-1})$. It would be nicer to use the " Σ "-notation:

$$a^{n} - b^{n} = (a - b) \cdot \sum_{k=0}^{n-1} a^{n-1-k} b^{k}$$

1

(e) For every n > 1, (2n + 1)! is divisible by $2^n \cdot n!$.