
Math 280A Fall 2009

1. Axioms of Set Theory

Let V be the collection of all sets and ∈ be a membership relation.
We consider (V,∈) as a mathematical structure. Analogy: A group is a mathematical structure

(G, ·,−1 , 1).
As the properties of group operations are given by group axioms, in the case of set theory,

the properties of ∈ will be given by axioms of set theory. These axioms will mimic an intuitive
understanding of membership. Among other things, the axioms of set theory give us rules how to
construct sets. This requires some care.

1.1 Example: Russell’s Paradox
E = {x|x /∈ x}. Then E is not a set. Why? If E is a set, then E ∈ E or E /∈ E. We get a

contradiction under either assumption. More exactly:
Either: E ∈ E. In this case E is an element of {x|x /∈ x}. So E must satisfy x /∈ x. Hence

E /∈ E. Contradiction.
Or else: E /∈ E. In this case E is not an element of {x|x /∈ x}. So E does not satisfy the

property x /∈ x. Therefore E ∈ E.
To avoid paradoxes of these kinds, we have to set some rigorous framework as a background.

The framework is the rigorous language. Our language will not be contained in V .

1.2 Definition: Language of Set Theory

Language consists of logical symbols:

Variables v0, v1, ... of which there are countably many.

Logical conjunctives: ¬ - negation, ∧ - conjunction (Professor Zeman writes &).

Quantifier: ∃ - existential quantifier.

Symbol for equality: =; Parentheses: ( , ) .

Special symbol: ∈ denotes membership relation.

Strictly speaking, we should differ between symbols and relations. e.g. we should write =,∈ for
actual relations (abstractly), and =̇, ∈̇ for symbols denoting the relations (the everyday language).
In practice, we “abuse notation” and do not formally distinguish between those– it will be clear
from the context whether we consider the relation or the symbol.

1.3 Definition: Formula
The notion of formula is defined inductively:
—The expressions vi ∈ vj, vi = vj (e.g. should be ∈̇, =̇) are formulae. These are called atomic

formulae.
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—If ϕ is a formula, then also ¬ϕ is a formula.
—If ϕ, ψ are formulae, then (ϕ ∧ ψ) is a formula.
—If ϕ is a formula then (∃vj)ϕ is a formula. And nothing else is a formula.

The remaining obvious symbols are viewed as abbreviations:
ϕ ∨ ψ : ¬(¬ϕ ∧ ¬ψ)
ϕ→ ψ : ¬ϕ ∨ ψ
ϕ↔ ψ : (ϕ→ ψ) ∧ (ψ → ϕ)
(∀vj)ϕ : ¬(∃vj)¬ϕ
So any formula can be viewed as a sequence of symbols.

1.4 Definition: Free occurrence
If ϕ is a formula and k <length(ϕ) we define what it means that k is a free occurrence of vi in

ϕ.

(i) k is an occurrence of vi in ϕ iff the kth element of ϕ is vi (we start numbering from 0).
Example:

vi ∈ vj
0 1 2

(ii) If ϕ is atomic then any occurrence of vi in ϕ is free. If ϕ is of the form ¬ϕ′ and k is a free
occurrence of vi in ϕ′, then k + 1 is a free ccurence of vi in ϕ.

(iii) if ϕ is of the form ϕ′ ∧ ϕ′′ and

—k is a free occurrence of vi in ϕ′, then k+ 1 is a free occurrence of vi in ϕ (parentheses count).
—k is a free occurrence of vi in ϕ′′ then k+length(ϕ′)+2 is free occurrence of vi in ϕ.
Example:
vi ∈ vj
0 1 2
vi = vl
0 1 2
(vi ∈ vj ∧ vi = vl)
0 1 2 3 4 5 6 7 8

(iv) If ϕ is of the form (∃vj)ϕ′, and i 6= j and k is a free occurrence of vi in ϕ′ then k + 4 is a
free occurrence of vi in ϕ. No other occurrence of vi in ϕ is free.

We say that vi has a free occurrence in ϕ iff there is some k <length(ϕ) that is a free occurrence
of vi in ϕ. (Has an occurrence k of vi in ϕ iff it is not free).

Remarks
(a) vi may have more free occurrences in ϕ.
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(b) Intuitively, k is a free occurrence of vi in ϕ if that occurrence of vi in ϕ is not under influence
of any quantifier.

(c) vi may have both free and bound occurrence in ϕ. Example:
ϕ : vi = vj ∧(∃vi)(vi = vk). It is free in its first appearance, and bound in the last two.

1.6 Definition: Sentence
A formula σ is a sentence iff no variable has a free occurrence in σ.

1.7 Remark
If ϕ(v0, ..., vn) is a formula and v0, ..., vn have free occurrences in ϕ, then the truth of ϕ depends

on what objects we plug in for these variables. Example:

v0 ∈ v1: If v0 7→ ∅, v1 7→ {∅} then the formula is true. But if v0 7→ ∅ and v1 7→ ∅ then the
formula is false.

But if we had a sentence σ, then we don’t need any evaluation of variables to determine the
truth of σ: (∀v1)(∃v0)(v0 ∈ v1) is false, while (∀v1)(∃v0)(v1 ∈ v0) is true (after we have defined our
axioms!).

The point of introducing rigorous language of set theory: it puts restrictions on what we can
express, and enables us to classify the “complexity” of notions. This way it makes sense that we
avoid all known paradoxes.

1.8 Zermelo-Fraenkel Axioms of Set Theory:

0. Existence
It tells us that the universe V is nonempty. (Actually, this axiom is superfluous, but it is added

for completeness). It is a logical axiom- something which is always true:

(∃x)(x = x).

1. Extensionality
Expresses the basic property of sets: two sets are equal iff they contain the same elements.

(∀x)(∀y)[x = y ↔ (∀z)(z ∈ x↔ z ∈ y)]

2. Foundation
Intuitively, it guarantees that the following situations never happen: x ∈ x, x ∈ y ∈ x, x ∈ y0 ∈

... ∈ yn ∈ x etc. or even x0 3 x1 3 ... 3 xn 3 ...
The way we express all of this in our language: we postulate that every nonempty set has an

∈-minimal element. So if A is a set and a ∈ A, then a is an ∈-minimal element of A iff no elements
of a are in A. i.e. a ∩ A = ∅.

If x ∈ x then the set {x} has no ∈-minimal element. If x ∈ y ∈ x then the set {x, y} has no
∈-minimal element and so on. In the rigorous language:
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(∀x)[(∃y)(y ∈ x) −→ (∃y)(y ∈ x ∧ (∀z)(z ∈ y → z /∈ x))]

3. Pairing
For any two sets x, y there is a set whose elements are just x, y and nothing else. In mathematics,

we denote this set by {x, y}. Rigorously:

(∀x)(∀y)(∃z)(∀u)[u ∈ z ←→ (u = x ∨ u = y)]

4. Union
This says: if x is a collection of sets then there is a set whose elements are precisely all elements

of sets in x. We call this set the union of x and denote it by
⋃
x. Example: if x = {u, v}, then⋃

x = u ∪ v. Now in our language :

(∀x)(∃y)(∀z)[z ∈ y ←→ (∃u)(u ∈ x ∧ z ∈ u)]

Without the following, the above axioms would be equivalent to arithmetic.

5. Infinity
There is an infinite set. We have to express this using a finite sentence. How: we introduce the

operation S that to each set assigns the set S(x) = x∪{x}. Also: ∅ ∈ V (we will see later). y = ∅
iff (∀z)(z ∈ y → z 6= z). Now, the axiom:

(∃x)[∅ ∈ x ∧ (∀z)(z ∈ x→ S(z) ∈ x)]

So x contains: ∅, ∅ ∪ {∅} = {∅}, {∅ ∪ {∅}} = {∅, {∅}},...

6. Separation Schema
It says: if a is a set and P (v) is a property expressable in our language, then there is a set

{x ∈ a|P (x)}. The important point: recall Russell’s Paradox: {x|x /∈ x} is not a set. But: if a is
any set, then {x ∈ a|x /∈ x} is a set.

It defines the following: if ϕ(x, y1, ..., yn) is a formula and a, a1, ..., an are sets then {z ∈
a|ϕ(z, y1, ..., yn)} is a set. Rigorously, the schema consists of all formulae of the form:

(∗) (∀x)(∀y1)...(∀yn)(∃u)(∀z)[z ∈ u←→ (z ∈ x ∧ ϕ(z, y1, ..., yn))]

Note: must state this syntactically- state variables instead of sets.
So for each formula ϕ, the schema contains the formula (∗). So the separation schema consists of

infinite lists of formulae. Note: we may not quantify formulae. This is a limitation of the language.
This forces us to list infinitely many things. Hence the descriptive word “schema.”

Example: If we let ϕ(z) be the formula z 6= z then the Separation Schema says:
(∀x)(∃u)(∀z)(z ∈ u←→ (z ∈ x ∧ z 6= z)).
(So this gives us a set u and we will write it as mathematicians usually do: {z ∈ x|z 6= z}(= ∅)).
In practice, the Separation Schema is used informally, so the above example would look as follows:
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By the existence axiom there is some set a. By separation, {z ∈ a|z 6= z} is a set.
If we picked another set b, then again {z ∈ b|z 6= z} is a set. By extensionality: ∅a = {z ∈ a|z 6=
z} = {z ∈ b|z 6= z} = ∅b. (Just for fun: to see that ∅a = ∅b we have to show (∀z)(z ∈ ∅a ↔
z ∈ ∅b). The inside two statements are trivially false so the inside is trivially true). Hence, this
procedure uniquely determines a set ∅ which we call the empty set. It’s uniquely determined by
the property:

x ∈ ∅↔ (∀z)(z /∈ x)↔ (∀z)(z ∈ x→ z 6= z).
(So we can use this ∅ in Axiom 5)

7. Replacement Schema
Informally: this schema expresses the following: if F : a→ V is a function defined by a formula

and a is a set, then there is a set b such that all values of F are in b. Toward rigorous formulation:
the quantifier of the form ∃!x means “there is exactly one x.” (∃!x)ϕ(x) is an abbreviation for
(∃x)ϕ(x) ∧ (∀y)(∀z)(ϕ(y) ∧ ϕ(z) → y = z). The Replacement Schema consists of all formulae of
the form:

(∀u)(∃v)(∀y1)...(∀yn)[(∀x)(x ∈ u→ (∃!y)ϕ(x, y, y1, ..., yn)) −→
(∀x)(∃y)(x ∈ u→ y ∈ v ∧ ϕ(x, y, y1, ..., yn))]

The first part tells us that ϕ defines a function that to each x assigns y and this assignment
depends on parameters y1, ..., yn. The last part says that for each x the corresponding value y is in v.

8. Power Set
The axiom expresses that to each set x, the collection of all subsets of x is contained in a set.

z ⊆ x is an abbreviation for (∀u)(u ∈ z → u ∈ x).

(∀x)(∃y)(∀z)(z ⊆ x→ z ∈ y)

9. Axiom of Choice (AC)
It says that if a is a collection of nonempty mutually disjoint sets, then we can find a set C that

has exactly one element in common with every set from a. So this gives us a “choice function:”
A ∈ a 7→ the unique object in A ∩ C

(picture)

(∀x)[(∃u)(u ∈ x) ∧ (∀u, v)(u, v ∈ x→ ¬(∃z)(z ∈ u ∧ z ∈ v)) ∧ (∀u)(u ∈ x→ (∃z)(z ∈ u))] −→
(∃y)(∀u)(u ∈ x→ (∃!z)(z ∈ u ∧ z ∈ y))

1.9 Remarks
(a) Axioms 0-6, and 8 constitute the so-called Zermelo axiomatic system, Z.
(b) Z + Replacement is called the Zermelo–Fraenkel axiomatic system and is denoted by ZF.
(c) ZC=Z+AC and ZFC= ZF+AC

1.10 Definition: Class
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Given a formula ϕ(x) with the only free variable x, the collection of all a ∈ V such that ϕ(a)
holds is informally denoted by {x|ϕ(x)}

Similarly, we can make this collection dependent on parameters. Say ϕ(x, y1, ..., yn) is a formula
with only free variables x, y1, ..., yn. If p1, ..., pn ∈ V , then the collection of all a ∈ V is denoted by
{x|ϕ(x, p1, ..., pn)}

Collections of this kind are called classes. Every set is a class: if a ∈ V then a = {x|x ∈ a}
(x ∈ a being the ϕ(x, y) mentioned above).

A class that is not a set is called a proper class.

1.11 Remark
Proper classes exist:
E = {x|x /∈ x} is obviously a class, but the argument for Russell’s Paradox shows that E is not

a set. Similarly, V is a proper class:
V = {x|x = x}
But if V were a set, then by the Separation Schema, also {x ∈ V |x /∈ x} = E would be a set.

Side note: the Axiom of Foundation hints at E = V .

(picture)

Intuitively: proper classes are collections that are very large, so that we would not consider
them sets.

Sets are elements of classes. However, proper classes are not elements of any classes. Proper
classes may be identified with formulae that describe them.

These formulae are not part of our language. This puts limitations on manipulators with proper
classes.

1.12 Basic Constructions
We show how to simulate usual mathematical constructions in (V,∈)

(a) We know already that unions are given by the Union Axiom. We define the intersection of
set a as follows:

⋂
a = {x|(∀y ∈ a)(x ∈ y)}

Here, (∀y ∈ a) is an abbreviation for (∀y)(y ∈ a→ ...).
So: we view a as a family of sets. Then

⋂
a is the set that consists of all elements that are

common to all sets in a. Informally,
⋂
{x, y, z} = x ∩ y ∩ z, although we don’t know what any of

that notation means yet.

If a = ∅ then
⋂
a = V . This is because every x ∈ V satisfies the implication (∀y)(y ∈ a→ x ∈

y). If a 6= ∅, then
⋂
a is a set. This is because we can pick b ∈ a and then

⋂
a ⊆ b. So⋂

a = {x ∈ b|(∀y ∈ a)(x ∈ y)} i.e.
⋂
a is defined using the Separation Schema.
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(b) Finite tuples
Pairing axiom tells us that if x0, x1 are sets then we have the set {x0, x1}. We can iterate this using
Pairing and Union Axioms:

If x0, x1, x2 are sets, then also {x0, x1} is a set and {x2} is a set. Then {{x0, x1}, {x2}} is a set.
Then using the Union Axiom:

⋃
{{x0, x1}, {x2}} is the set whose elements are precisely x0, x1, x2.

By continuing this process, for any sets x0, ..., xn−1 we get the set whose elements are precisely
x0, ..., xn−1 (i.e. {x0, ..., xn−1}).

(c) Finite boolean operators
Now we can let x0 ∪ x1 ∪ · · · ∪ xn−1 =

⋃
{x0, ..., xn−1} and x0 ∩ x1 ∩ · · · ∩ xn−1 =

⋂
{x0, ..., xn−1}

(these sets exist by (b)).
We also define:
Set difference: x− y = {z ∈ x|z /∈ y}. This is a set by Separation.
Symmetric difference: x∆y = (x− y) ∪ (y − x).
x∆y consists of those objects on which x, y disagree.

(d) Ordered pairs
For each pair of sets x, y we define the set 〈x, y〉 that would simulate what mathematicians under-
stand under ordered pair. It has to satisfy the following property:
〈x, y〉 = 〈x′, y′〉 ⇐⇒ (x = x′ ∧ y = y′).
We let 〈x, y〉 = {{x}, {x, y}}. This is in V by the above.

Claim: {{x}, {x, y}} = {{x′}, {x′, y′}} ⇐⇒ (x = x′ ∧ y = y′). The ⇐ direction is obvious. As
for ⇒: we use the Axiom of Extensionality to check that x = x′ and y = y′. By the Axiom, we
know that the elements of the two sets are equal. Then we use the Axiom of Extensionality again
to check the separate elements of our first set, getting that their elements are equal.

(e) Ordered tuples
This is defined inductively: 〈x0, x1, x2〉 = 〈〈x0, x1〉, x2〉
· · ·
〈x0, ..., xn−1〉 = 〈〈x0, ..., xn−2〉, xn−1〉.

(f) A binary relation is a class of ordered pairs. A function F is a binary relation that simulates
the assignment, i.e., the one that satisfies

(∀x)(∀y)(∀y′)(〈x, y〉 ∈ F ∧ 〈x, y′〉 ∈ F → y = y′).
We write y = F (x) instead of 〈x, y〉 ∈ F .

(g) Cartesian products
If A,B are classes then the Cartesian product A×B is defined:
{〈x, y〉|x ∈ A ∧ y ∈ B}
This is a class because if ϕ(x) defines A and ψ(y) defines B then θ(x, y) = ϕ(x) ∧ ψ(y) defines

A×B.
Now: if A,B are sets then also A×B is a set. Rigorously: if A,B ∈ V , then A×B ∈ V . This

is not obvious and requires either Replacement or Power set. (It can be proved that without these
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two, Cartesian products may not be possible with some sets).

A×B is a set:

Proof. Argument 1- Using Replacement:
Fix x ∈ A. Then (∀y ∈ B)(∃!z)(z = 〈x, y〉). In other words, we have a formula ϕ(x, y, z) ≡ z =

〈x, y〉 that defines a function y 7→ 〈x, y〉. By Replacement there is a set C such that the range of
this function is contained in C, i.e., for each y ∈ B we get the tuple 〈x, y〉 ∈ C. We then use the
Separation Schema to separate all these tuples: we let

Bx = {〈x, y〉|〈x, y〉 ∈ C} = (by construction) {z ∈ C|(∃y ∈ B)(〈x, y〉 = z)}
This is a valid definition using Separation. This tells us that for each x ∈ A, Bx = {〈x, y〉|y ∈ B}

is a set.

(picture)

So: we showed using Replacement Schema + Separation that for each x ∈ A, Bx = {〈x, y〉|y ∈
B} is a set. Moreover, the assignment/function x 7→ Bx is a class because we have a description for
this assignment in the language of set theory:

u = Bx ⇐⇒ (∀z)[z ∈ u←→ (∃y)(y ∈ B ∧ 〈x, y〉 = z)]

So: for each x ∈ A there is exactly one u such that ϕ(x, u). We apply Replacement again to
conclude that there is some set D such that: for each x ∈ A there is u ∈ D such that ϕ(x, u). Hence
all “sections” Bx are elements of the set D. But D may possibly contain other elements that are
not of our interest. So we use Separation to get rid of these:

{u ∈ D|(∃x)(x ∈ A ∧ u = Bx)} is a set by Separation and it is exactly {Bx|x ∈ A}. Finally, by
Union Axiom: A×B =

⋃
{Bx|x ∈ A} =

⋃
{〈x, y〉|y ∈ B} (sloppy notation for the second one!)

Now let’s use the Power axiom instead of Replacement:

Argument 2- Power axiom
Again recall A×B = {〈x, y〉|x ∈ A ∧ y ∈ B}. We said that 〈x, y〉 = {{x}, {x, y}}. Now:

x ∈ A⇒ x ∈ A ∪B ⇒ {x} ⊆ A ∪B ⇒ {x} ∈ P(A ∪B).
x ∈ A, y ∈ B ⇒ x, y ∈ A ∪B ⇒ {x, y} ⊆ A ∪B ⇒ {x, y} ∈ P(A ∪B).

Those two ⇒
{{x}, {x, y}} ⊆ P(A ∪B)⇒ {{x}, {x, y}} ∈ P(P(A ∪B)). So
A × B = {z ∈ P(P(A ∪ B))|(∃x)(∃y)(x ∈ A ∧ y ∈ B ∧ [z = {{x}, {x, y}}])} This is a set by

Separation.

(h) Generalization of construction from (g),(a)
If F is a class function, say y = F (x) ⇔ ϕ(y, x, p1, ..., pn) and A is a set, then the restriction of F
to A:
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F � A = {〈x, F (x)〉|x ∈ A} is a set. Hint: First use replacement to find a set B such that
the pointwise image of A (F [A]) = {F (x)|x ∈ A} ⊆ B then use Separation to conclude that
F � A = {〈x, y〉 ∈ A×B|y = F (x)} is a set.

(i) Operations on Classes:
We can perform finite Boolean operations: A1 ∩ ... ∩ An, V − A,...

For instance, if ϕi(x) is a formula that describes the class Ai , i = 1, ..., n, then ϕ1(x)∧ ...∧ϕn(x)
describes A1 ∩ ... ∩ An. Similarly, the complement V − A is described by ¬ϕ1(x).

We cannot form pairs: if A,B are classes then {A,B} is not a class... we don’t have a description
in our language for that.

There is a way of forming infinite intersection/unions of classes but this requires just some way
of coding families of classes through one class.

Example: {A,B} could be coded as: {〈∅, x〉|x ∈ A} ∪ {〈{∅}, y〉|y ∈ B}.

2. Natural Numbers

Goals of this section:
—Show how to represent natural numbers in the structure (V,∈).
—Present a simple example of recursion.
In section 2 we work in the theory “ZF without Axiom of Foundation.” This will be important

for some things that we will do.

2.1 Definition: Inductive set
A set X is inductive iff:
(i) ∅ ∈ X
(ii) for each x ∈ X, also S(x) = x ∪ {x} ∈ X.

So inductive sets contain all elements of the form ∅, {∅}, {∅, {∅}},...
Look back at the Axiom of Infinity: it says that there is an inductive set.

Let IND= the class of all inductive sets. This is a class because IND={x|x is inductive }. And
by the Axiom of Infinity: IND 6= ∅. So by the remarks at the end of section 1:

⋂
IND is a set.

2.2 Definition: ω
ω =

⋂
IND=smallest inductive set. ω will represent the natural numbers in this structure.

2.3 Definition: Transitive set
A set x is transitive iff every element of x is a subset of x, i.e., (∀z)(z ∈ x→ z ⊆ x). Equivalently:

u ∈ z ∧ z ∈ x −→ u ∈ x. This tell us that x is a family of sets that correctly identifies all elements
of sets in x.

In other words, if z ∈ x it is enough to know x to be able to recover all elements of z.

(picture)
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Equivalently: x is closed under “going backwards” in terms of x. Notice: elements of ω are
transitive.

10/07/09
Recall: a set x is transitive iff z ∈ x → z ⊆ x for all z. So if x is transitive and z, z′ ∈ x then

the information that x provides is sufficient to decide whether z = z′. So this x behaves like a little
universe of sets. I.e., the structure (x,∈) satisfies the Axiom of Extensionality.

2.4 Proposition:
(a) Every element of ω is a transitive set.
(b) ω itself is a transitive set.

Proof. This is mathematical induction simulated inside the universe (V,∈).

(a) Let A = {x ∈ ω|x is a transitive set}. A is a set by Separation. Obviously A ⊆ ω. We show
that A is inductive. Because ω is the smallest inductive set, we must have ω ⊆ A. Hence A = ω.
To see that A is inductive:

—∅ ∈ A this is true since ∅ is obviously transitive.
—x ∈ A⇒ x ∪ {x} ∈ A:
Assume x is transitive. Now if z ∈ x ∪ {x} then either z ∈ x, but then z ⊆ x ⊆ x ∪ {x} (since

x is transitive)(this is the induction hypothesis) or else z = x but then z ⊆ x ∪ {x}.
(b) We let B = {x ∈ ω|x ⊆ ω}. Again we show that B is inductive. As in A, this will give

B = ω.
—∅ ∈ B (because ∅ ⊆ ω)
—If x ∈ B then x ∪ {x} ⊆ ω (by the induction hypothesis: x ⊆ ω as x ∈ B).

Now one of the most important definitions in set theory:

2.5 Definition: Well-founded
A binary relation R is well-founded iff every nonempty set has an R-minimal element. That is:

if A is a set and A 6= ∅ then there is some a ∈ A such that
x ∈ A −→ 〈x, a〉 /∈ R for all x.

(picture)

This includes the option that 〈x, a〉 /∈ R for all x.

2.6 Remark:
The Axiom of Foundation asserts that the membership relation is well-founded.

Convention: if R is a binary relation, we often write xRy instead of 〈x, y〉 ∈ R (we don’t want
to be writing 〈x, y〉 ∈∈. This would mean 〈x, y〉 ∈ ∈̇)

2.7 Notation:
If R is a binary relation and A is a class, then the restriction of R to A is the binary relation

R ∩ (A× A) = {〈x, y〉 ∈ R|x, y ∈ A}.

10



2.8 Proposition:
The restriction of the relation ∈ to ω is well-founded. The important point here is that we can

prove this without the Axiom of Foundation (hence we are not assuming it).

(important example of induction)

Proof. This boils down to proving the following: If A ⊆ ω is nonempty, then A has an ∈-minimal
element.

Notice: x ∈ ω is an ∈-minimal element of A iff x ∈ A and x∩A = ∅ (this says that z ∈ x→ z /∈
A— check with definition 2.5). We prove the contraposition: If A ⊆ ω has no ∈-minimal element,
then A = ∅.

Let B = {x ∈ ω|x ∩ A = ∅}. We show that B = ω. This will tell us that x ∩ A = ∅ for all
x ∈ ω. So in particular: if y ∈ ω then also y ∪ {y} ∈ ω and (y ∪ {y}) ∩ A = ∅, hence y /∈ A. This
shows: y ∈ ω ⇒ y /∈ A. Since A ⊆ ω, we have A = ∅.

So we now prove that B = {x ∈ ω|x ∩ A = ∅} is equal to ω. Again, it suffices to prove that B
is inductive.

—∅ ∈ B because ∅ ∩ A = ∅.
—If x ∈ B then (x∪{x})∩A = ∅, as otherwise (x∪{x})∩A = {x} since x ∈ B, i.e., x∩A = ∅.
But then x ∈ A and x ∩A = ∅ so x is an ∈-minimal element of A. But we were assuming that

A has no ∈-minimal element.

Summary: this is essentially a rigorous version of the naive inductive proof that every nonempty
A ⊆ N has a least element. However, here we are not assuming that ∈ is a linear ordering on ω.

2.9 Definition: Ordering
A binary relation R is a partial ordering on A iff
R is reflexive on A, i.e., xRx for all x ∈ A
R is antisymmetric, i.e., (xRy ∧ yRx)⇒ y = x
R is transitive, i.e., (xRy ∧ yRz)⇒ xRz

R is a strict partial ordering iff
R is irreflexive, i.e., ¬xRx for all x.
R is transitive.

There is an obvious relationship between the two: If R is a non-strict partial ordering, then
(xRy ∧ x 6= y) is a strict one; we call it the strict part of R.

If R is a strict partial ordering then (xRy ∨ x = y) is a non-strict one, and its strict part is R
(check this).

A strict partial ordering R is linear on A iff it is trichotomic:
xRy or x = y or yRx for all x, y ∈ A.

2.10 Definition: Well-ordering
A strict linear ordering on A is a well-ordering on A iff it is well-founded.

2.11 Remark:
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(a) If R is a linear ordering ≺ on A and X ⊆ A is nonempty, then if x ∈ X is a minimal element
of X with respect to ( ≺ ) , because any two elements are ≺-comparable.

(b) If we have a strict partial ordering ≺ on A with the property that each nonempty X ⊆ A
has a ≺-least element then ≺ is automatically linear, hence ≺ is a well-ordering on A. (Think about
this).

Recall:
• A binary relation R is well-founded iff every set B 6= ∅ has an R-minimal element, i.e. some

b ∈ B such that 〈z, b〉 /∈ R for all z ∈ B.
• A strict ordering is:
—A strict linear ordering ≺ on A iff it satisfies the trichotomicity:
x ≺ y or x = y or y ≺ x for all x, y ∈ A.
—A well-ordering on (of) A iff it is linear and well-founded. Equivalenty: iff every ∅ 6= X ⊆ A

has an ≺-least element.

2.12 Remark:
Any well-founded relation is irreflexive. If R is well-founded, then for each x we have 〈x, x〉 /∈ R

because otherwise {x} would be a set without an R-minimal element. However, R need not be
necessarily transitive if it is irreflexive.

2.13 Lemma:
For each x, y ∈ ω we have:
x ∈ y → (S(x) ∈ y ∨ S(x) = y)
Analogy: x < y → (x+ 1 < y ∨ x+ 1 = y) for x, y ∈ N. We also have the following parallel:
x+ 1 = S(x).

Proof. Induction on y:
Let Ax = {y ∈ ω|x ∈ y → (S(x) ∈ y ∨ S(x) = y)}
We show that Ax is inductive.
—∅ ∈ Ax trivially, as “x ∈ ∅” is always false.
—Now assume y ∈ Ax. We prove that S(y) ∈ Ax.
Assume x ∈ S(y) = y ∪ {y}. Then
Either x ∈ y, in which case S(x) ∈ y or S(x) = y by the inductive hypothesis. In either case,

S(x) ∈ S(y).
Or else x = y but then trivially S(x) = S(y).

2.14 Proposition:
∈ restricted to ω is a strict linear ordering on ω. Because we already proved that this restriction

is well-founded, it follows that it is a well-ordering on ω.

Proof. Irreflexivity: We want x /∈ x for all x ∈ ω. Let A = {x ∈ ω|x /∈ x}. We show that A is
inductive:

—∅ ∈ A trivially
—Assume that x /∈ x. Show that S(x) /∈ S(x). What if S(x) ∈ S(x) = x ∪ {x}?
Case 1: S(x) ∈ x. But we have proved that x is transitive, so S(x) ⊆ x. But then x ∈ x— a

contradiction.
Case 2: S(x) = x. In this case, trivially x ∈ x. Contradiction again.

12



Transitivity: This follows from our previous result that all elements of ω are transitive sets: if
x ∈ y, then y ∈ z, because z is a transitive set: y ⊆ z → x ∈ z.

Trichotomicity: Want to prove: x ∈ y or x = y or y ∈ x for all x, y ∈ ω. This is proved by
induction on x:

Let A = {x ∈ ω|(∀x ∈ ω)(x ∈ y ∨ x = y ∨ y ∈ x)}. Prove A is inductive:
—∅ ∈ A : ∅ ∈ y ∨ ∅ = y ∨ y ∈ ∅ for all y ∈ ω. This is proved by induction on y. Easy–

exercise.
—x ∈ A → S(x) ∈ A. So assume (x ∈ y ∨ x = y ∨ y ∈ x). If x = y or y = x then

y ∈ S(x) = x ∪ {x}. This is clear.
If x ∈ y then we get S(x) ∈ y or S(x) = y. Also easy to check.

The point of the previous work:
(ω,∈) behaves exactly as our intuitive (N, <).

Recursion on ω (A warm up for later.)
Intuitively, we want to construct objects a0, a1, ..., an, ... for n ∈ N recursively, i.e. we will have

some “recipe” how to construct an if we already know a0, ..., an−1.
The “recipe” can be viewed as some function G, so an = G(〈a0, ..., an−1〉). We do not require

that objects a0, a1, ... are elements of a set fixed in advance. However, we would like that the se-
quence 〈a0, a1, ...〉 constructed at the end is a set, i.e. it is an element of V . This will require the
use of Replacement.

2.15 Theorem: (Construction by Recursion on ω)
Let G : V → V be a class function. Then, there is a unique function F : ω → V such that for

all n ∈ ω we have

(∗)f(n) = G(f � n).

Recall n = {0, ..., n− 1}.

Proof. Uniqueness:
Induction on n: Assume f, f ′ satisfy (∗). Now we let A = {n ∈ ω|(∀i < n)f(i) = f ′(i)}. We

show that A is inductive. This will tell us that f(n) = f ′(n) for all n ∈ ω.
—∅ ∈ A: trivial.
—n ∈ A −→ S(n) ∈ A: n ∈ A means f � n = f ′ � n. To see that S(n) ∈ A, it is enough to prove

that f ′(n) = f(n). So: f ′(n) = G(f ′ � n) = G(f � n) = f(n). Next: existence. We will look at all
finite approximations to this function and show that these finite approximations are coherent, then
we take the union. We will then use Replacement to show that the collection of all these objects is
a set.

We are proving the theorem on construction by Recursion. We proved the uniqueness part, now
we prove the existence.

Existence. Recall: given is a class function G : V → V which tells us what to do at the next
step in the recursion. We want to construct f : ω → V such that

(i) (∀u ∈ ω)(f(u) = G(f � u))
(ii) f is a set.

13



Strategy: we define a class (F ) of all approximations to f . Then we show that F is a set, i.e.
F ∈ V . Then finally we “glue” all approximations together.

We let F = the class of all functions p such that dom(p) ∈ ω and for all i ∈ dom(p) we have
p(i) = G(p � i).

Here dom(p) = the set of all i such that p(i) is defined. In general, if A is a class we let
dom(A) = {x|(∃y)(〈x, y〉 ∈ A}) and rng(A) = {y|(∃x)(〈x, y〉 ∈ A})

Easy to see: if A is a set then so are dom(A) and rng(A) (exercise).
So elements of F are functions p where dom(p) = {0, 1, ..., n − 1} = n for some n ∈ ω and

p(i) = G(〈p(0), p(1), ..., p(n− 1)〉(= p � n)) – intuitively.
F is a class, because it has a description in the language of set theory:

p ∈ F ⇐⇒ p is a function ∧ dom(p) ∈ ω ∧ (∀i)[i ∈ dom(p)→ (∃z)(z = p � i) ∧ 〈i, G(z)〉 ∈ p]

(tells me p(i) = G(p � i)). It is easy to check that this can be turned into a formula in the language
of set theory. (exercise).

Claim 1: F is a coherent class of functions, i.e. if p, q ∈ F then for all i ∈ ω:

i ∈ dom(p)∩ dom(q)⇒ p(i) = q(i). In particular, if p, q ∈ F and dom(p) = dom(q) then p = q.

Proof: This is very much like the proof of uniqueness we had last time. Given p, q ∈ F , show
that

A = {n ∈ ω|(∀i ∈ n)[(i ∈ dom(p)∩ dom(q))→ p(i) = q(i)]}

is inductive. (exercise).
Notation— If we have a coherent class of functions H, i.e. p(x) = q(x) whenever p, q ∈ H and

x ∈ dom(p)∩ dom(q), we can “glue” H together into one function h defined as follows:

dom(h) =
⋃
{ dom(p)|p ∈ H} and h(x) = p(x) for any p ∈ H s.t. x ∈ dom(p).

This gives us a function, because the value p(x) is always the same no matter how we pick p ∈ H.
Because we view functions in H as sets of ordered pairs:

h =
⋃
H.

By Claim 1: (∀n)(∃!p)(p ∈ H∧ dom(p) = n).
Claim 1 tells us that there exists at most one p for each n. On the other hand, by induction on

n we can prove that for each n ∈ ω there is at least one p ∈ H such that dom(p) = n. Simply show
that

A = {n ∈ ω|(∃p)(p ∈ F∧ dom(p) = n})

is inductive. The induction step: if n ∈ F , we have p ∈ F with dom(p) = n. Then p′ =
p ∪ {〈n,G(p)〉} ∈ F and dom(p) = S(n).

By Replacement and Separation (Was a homework problem) F is a set, i.e. F ∈ V . But by the
above remark on notation: f :=

⋃
F is a function. Moreover, dom(f) = ω because if n ∈ ω then

S(n) ∈ ω so we have some p ∈ F such that dom(p) = S(n), i.e. n ∈ dom(p).
Finally: for each p ∈ F and i ∈ dom(p), f(i) = p(i) by definition of f . Hence if i ∈ ω pick some

p ∈ F such that i ∈ dom(p). Then f(i) = p(i) by the above (= G(p � i) since p ∈ F = G(f � i))
(by the above, or just by the fact that p ∈ F and the definition of F).
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Example 1
To each x ∈ ω there is exactly one function fx ∈ V such that fx : ω → ω and the following is true:

fx(0) = x (x+ 0 = x)
fx(S(y)) = S(fx(y)) (x+ (y + 1) = (x+ y) + 1)

This is guaranteed by the theorem on construction by recursion. What would be the function
G in this case? G(u) = x if x = ∅ G(u) = S(

⋃
rng(u)) otherwise. (u = 〈x+ 0, ..., x+ n〉).

So fx simulates adding y to x. Now again: to each x ∈ ω there is a unique f such that f satisfies
the conditions we assigned to it. By construction by recursion we have a function F that assigns
x 7→ fx when fx is as in above.

So we have F : ω → V such that f(x) = fx. Hence we can define a function f : ω × ω → ω by
f(x, y) = fx(y) = F (x)(y).

Hence f ∈ V and f simulates addition on ω.
Similarly we can define functions simulating multiplication and exponentiation: following the

recursive rules:
x · 0 = 0
x · S(y) = x · y + x
and also x0 = 1
and xn+1 = xn · x.

From now on we will write x+ 1 instead of S(x).
————
In mathematics, we start from natural numbers N – assume they are given. Then we construct Z

as a ring: elements of Z are represented as equivalence classes of pairs (m,n) where the equivalence
relation is given by

(m,n) ∼ (m′, n′)⇔ m+ n′ = m′ + n
So (m,n) ∼ (m′, n′) represents the difference m− n. The operations are defined the usual way

as on quotients. We may do this by taking the cross product, using the power set axiom, etc...
Then we construct Q in a similar way: pairs (p, q) where p ∈ Z, q ∈ Z+ represent the ratio p

q
;

the equivalence relation is (p, q) ∼ (p′, q′) iff pq′ = p′q. The operations are again defined the usual
way as on quotients.

Then we construct R. One possibility is to follow Dedekind:
If (A,<) is a strict linear ordering on A, an initial segment of (A,<) is that is a subset (A′, <)

that is downward closed: i.e. if x ∈ A′, y ∈ A, and y < x then y ∈ A′.
Example: Q∩ (−∞,

√
2) cannot be described if we want to refer only to finitely many elements

of Q. But it is an initial segment of (Q, <).
Let us say that the initial segment (A′, <) of (A,<) is induced by X ⊆ A iff
—X ⊆ A′

—For every a ∈ A′ there is some x ∈ X such that a ≤ x.
So A′ is the “downward closure” of X.
For instance: the downward closure of {1− 1

n
|n ∈ N} is (−∞, 1).

Let R = the set of all initial segments of (I,<) of (Q, <) such that I /∈ {∅,Q}.
We think of I as representing sup(I). Here we seriously use the Power Set Axiom, as each I is

in P(Q). So we let R+ = the set of all I ∈ R such that I contains some positive rational number.
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We define the operations:
⊕ on R: I ⊕ J = the initial segment of Q induced by {x + y|x ∈ I ∧ y ∈ J}. (Actually this is

an initial segment of (Q, <)).
⊗: For I, J ∈ R+ we let I⊗J = the initial segment of Q induced by {xy|x ∈ I∩Q+∧y ∈ J∩Q+}.

This operation can then be extended to R × R in the straightforward way. With a little work, we
can prove that (R,⊕,⊗, (−∞, 0), (−∞, 1)) is a ring; Q is dense in R and R has suprema:

If F ⊆ R then
⋃
F is an initial segment of Q so if

⋃
F 6= Q then

⋃
F ∈ R and one can show

that this operation
⋃

is really the “sup” operation.
Once we have R: We can construct all objects relevant for maths: Function spaces, measures,

algebraic structures: these involve several applications of the Power Set Axiom.
Say the collection of all function f : R→ R is viewed as a subset of P(R× R).
Summary: once we have a faithful representation of natural numbers in (V,∈) we can faithfully

represent all other objects of mathematical interest.
Important/popular Zeman example:
It is possible to show: there is a continuous function f : [0, 1] → [0, 1] × [0, 1]. Such a function

is called Peano function. So this function is represented by a pair of functions (f1, f2), i.e.
f(x) = (f1(x), f2(x))
One can show: for each x ∈ (0, 1) both f1, f2 cannot have a derivative.
Question: is it possible that for every x ∈ (0, 1) at least one of f1, f2 has a derivative?
Answer: No way to decide. This means the following– we can find a universe of sets (V,∈) where

this question has positive answer, and a universe of sets (V ′,∈′) where this question has negative
answer.

From now on, we treat natural numbers informally: will often write n < n′ instead of n ∈ n′
and n+ 1 instead of S(n).

Example 2:
Using recursion we can construct the following sets:

V0 = ∅
Vn+1 = P(Vn)
Vω =

⋃
n∈ω Vn.

One can show that Vn ⊆ Vn+1. Also, all Vn are transitive.
One can show that all axioms of ZFC without the axiom of infinity are true in the structure

(Vω,∈). On the contrary, (Vω,∈) satisfies the statement “there is no infinite set.”
One can show that if we replace the axiom of infinity by the axiom “there is no infinite set”

(negation of axiom of infinity) we get a theory of the same strength as arithmetic (the theory of
finite sets).

What is the function G in the theorem on recursion?
Recursively, we are constructing sequences: g0 = ∅, g1 = 〈∅〉, g2 = 〈∅,P(∅)〉, ... gn =

〈∅,P(∅), ...,Pn−1(∅)〉.
gn+1 = G(gn) by the theorem, so: G has the following definition:
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G(u) = ∅ if u = ∅.
G(u) = P(

⋃
rng(n)) otherwise.

This is also defined for u that is not a function, but we do not care about the values of G in that case.

Example 3:
To each set x there is a transitive set x′ such that x ⊆ x′. In fact, there is a smallest among all
such sets; we call this set the transitive closure of x..

So: x′ = trcl(x) iff
—x′ is transitive and x ⊆ x′

—For all y: if y is transitive and x ⊆ y ⇒ x′ ⊆ y.
How to get x′: By recursion:

x0 = x
x1 =

⋃
x

...
xn+1 =

⋃
xn

...
x′ =

⋃
n∈ω xn.

Check that x′ has these properties: The function G from the theorem on recursion: G(u) = x if
u = ∅ and G(u) =

⋃⋃
rng(u).

Example 4:
A binary relation R is set-like iff for each x, the class predR(x) = {z|zRx} is a set. Here predR(x)
stands for “R−predecessors of x.”

An example of a proper class relation that is set-like:

∈. Because if x ∈ V then {z|z ∈ x} = x. We say that a class A is transitive with respect to R
iff for every x ∈ A and every z: zRx⇒ z ∈ A. In other words, predR(x) ⊆ A.

If B is a class, then the transitive closure of B with respect to R is the smallest (with respect
to inclusion) class B∗ such that B∗ is transitive with respect to R and B ⊆ B∗. If R is ∈, then we
get Example 3.

———
Recall: R is a set-like relation, i.e., predR(x) = {z|zRx} is a set.
If A is a class: the transitive closure of A under R is the smallest class A′ that is transitive with

respect to R and contains A as a subclass.
First notice: For each x ∈ V : trclR(x) is a set. Why: Because we can define sets xn by

recursion–

x0 =
⋃
{ predR(z)|z ∈ x}

xn+1 =
⋃
{ predR(z)|z ∈ xn}.

Then xω =
⋃
n∈ω xn. Notice that xω is a set and xω = trclR(x).

Notice: if x is a set then the function fx : x → V defined by fx(z) = predR(z) is a set because
we assume that R is set-like; the conclusion then follows by Replacement + Separation. But then
x0 =

⋃
rng(fx) is a set. So the function G in the theorem on recursion is the following:
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G(u) =

{ ⋃
{ predR(z)|z ∈ x} if u = ∅⋃

rng(u) otherwise

Hence xω is a set. Easy to check: xω = trclR(x). This tells us that for any set x, trclR(x) is a set.
Moreover, the fact “y = trclR(x)” can be expressed by a formula in the language of set theory– this
formula obviously depends on the definition of R, i.e., on the formula that defines R.

Now if A is a class, then trclR(A) =
⋃

trclR({x}) – check this.
So we can write: z ∈ trclR(A) ↔ (∃x)(x ∈ A ∧ z ∈ trclR({x})). (A can be described by a

formula, as A is a class). And z ∈ trclR({x}) means (∃y)(y = trclR({x}) ∧ z ∈ y).
So the formula on the right defines trclR(A), which means that trclR(A) is a class.

—————–End of Section Two————End of Most Formalisms——————–

3. Ordinals

Goals:
- Present basic facts about well-orderings.
- Present Von Neumann’s construction of ordinals.

Recall: a pair (A,<) is a well-ordered set iff < is a well-ordering on A, i.e. < is a linear ordering
on A such that every nonempty X ⊆ A has a least element with respect to A.

The immediate Purpose of well-orderings: they offer a generalization of constructions by recur-
sion that go beyond ω.

(picture of dots and numbers and the ωth element ...)

Notice: 0, 1, 2, ..., ω, S(ω) = ω ∪ {ω}, S(S(ω)), ...

3.1 Definition: Bijection
Let (A,R) , (B, S) be structures with binary relations, i.e., R ⊆ A × A and S ⊆ B × B. We

say that a bijection f : A→ B is an isomorphism between (A,R) and (S,B) iff for all x, y ∈ A we
have:

xRy ⇔ f(x)Sf(y)
Recall: f : A→ B is a bijection iff f is injective (i.e. x 6= y → f(x) 6= f(y)). and surjective (i.e.

rng(f) = B, equivalently (∀z ∈ B)(∃x ∈ A)(f(x) = z)).
Remark: The equivalence “⇔” cannot be replaced by “⇒;” for instance: the identity map

id : N+ → N+ defined by id(x) = x satisfies “⇒” but not “⇔” if we let R = | (the divisibility
relation and S =≤).

3.2 Fact:
If (A,<) and (A′, <′) are linear orderings then a bijection f : (A,<)→ (A′, <′) is an isomorphism

iff for all x, y ∈ A
x < y ⇒ f(x) <′ f(y) (exercise)

3.3 Proposition:
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Let (A,<), (A′ <′) be well-orderings and let f : (A,<)→ (A′, <′) be an isomorphism. Then for
each x ∈ A:

(∗)f(x) =the least element in A′ − f [(←, x)] with respect to <′

where (←, x) = {z ∈ A|z < x} is the initial segment below x in A and for X ⊆ A:

f [X] = {f(z)|z ∈ X} = the point-wise image of X under f . (picture)

So in particular, the isomorphism is unique. Also, this points out towards recursion: if we view
f as defined recursively according to < then f(x) = the least element of A′ under <′ that has not
been used so far.

Proof. Assume not. So we have some x ∈ A that violates (∗). Since < is a well-ordering on A,
there must be a least such. So assume x is the least such. Then:

—If z < x then f(z) <′ f(x)
—If x < u then f(x) <′ f(u)
(picture)
So in particular: A′ − f [(←, x)] 3 f(x)
Since we are assuming f(x) is not the <′ −least element in A′ − f [(←, x)] 3 f(x) , we can find

some y ∈ A′−δ[(←, x)] such that y <′ f(x). Then y /∈ rng(f). This is because clearly y /∈ f [(←, x)]
by definition, and if u ≥ x then f(u) ≥′ f(x) >′ y. So y /∈ rng(f). Contradiction as f must be
surjective.

3.4 Example:
The conclusion in 3.3 heavily depends on the fact that we worked with well-orderings.
For instance, (Q, <) with natural ordering is not a well-ordering (least elements might not even

exist). There are many isomorphisms f : (Q, <)→ (Q, <) (x 7→ x , x 7→ 2x, etc.)

3.5 Proposition:
If (A,≤) is a well-ordered set and A′ ⊆ A then < is a well-ordering on A′, i.e. (A′, < ∩(A′×A′))

is a well-ordered set.
Proof: Exercise.
Remark: In future I will write briefly (A′, <) instead of (A′, < ∩(A′ × A′)).

3.6 Proposition:
(a) If (A,≤) is a well-ordering and f : A→ A is an order-preserving map, i.e.:

x < y → f(x) < f(y) =⇒ f(x) ≥ x for all x ∈ A.

(b) If (A,≤) is a well-ordering then (A,<) is not isomorphic to any of its proper initial segments.
Proof: Exercise. (b) is a direct consequence of (a)

3.7 Proposition:
Assume (A,≤) and (A′,≤′) be two well-orderings. Then one of them is isomorphic to an initial

segment of the other.
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Proof: (Naive sketch—compare with construction by recursion on ω) Strategy: we look at all
isomorphisms of initial segments of (A,≤) onto initial segments of (A′,≤′). We show that these
isomorphisms cohere. Then we “glue” them together.

Claim 1: Assume I, J are initial segments of (A,≤) and I ′, J ′ are initial segments of (A′,≤′)
and f : (I,<)→ (I ′, <′), g : (J,<)→ (J ′, <′) are isomorphisms. Then f, g cohere, i.e. f(x) = g(x)
whenever x ∈ I ∩ J .

Proof. By proposition 3.1 notice that (←, x) ⊆ I ∩ J whenever x ∈ I ∩ J .

f(x) =<′ −least element of I ′ − f [(←, x)].

But that is the same as the <′ − least element of A′− f [(←, x)] because I ′ is an initial segment
of A′.

Similarly for g(x); g(x) =<′ −least element of A′ − g[(←, x)]. Since this characterization deter-
mines the map uniquely (By 3.1), we have f(x) = g(x).

In particular: If f : (I,<)→ (I ′, <′) is an isomorphism where I, I ′ are as in Claim 1, then f is
unique.

So let Ā = {x ∈ A — there is an isomorphism f of the interval (←, x) onto an initial segment of
(A′,≤′)} The we have a map x 7→ fx which to each x assigns the unique isomorphism fx of (←, x)
onto an initial segment of (A′,≤′). Then, by Replacement and Separation:
F = {f |(∃x ∈ A)(f is an isomorphism of ((←, x), <) onto an initial segment of (A′,≤′)}) is a set:

By Claim 1, this is a coherent set of maps, so if we let F =
⋃
F then F is a map, and by definition

F is an isomorphism of an initial segment of (A,≤) onto an initial segment of (A′,≤′). (Check this).

Claim 2: If dom(F ) = A, then F is an isomorphism of (A,≤) onto an initial segment of (A′,≤′).
Obvious.

Claim 3: If dom(F ) 6= A then rng(F ) = A′.

(picture)

Proof. Let x be the < −least element of A− dom(F ).
If rng(F ) 6= A′, let y be the <′ −least element of A′− rng(F ). Then let F ′ = F ∪ {〈x, y〉} —In

other words dom(F ′) = dom(F ) ∪ {x} and

F ′(z) =

{
F (z) for z < x

y for z = x

Notice: F ′ ∈ F , because obviously F ∈ F and by the definition of F ′. (Check this). But this is
not possible since F ′ ) F and F =

⋃
F .

Claim 4: If dom(F ) 6= A. Then G = F−1 = {〈y, x〉|〈x, y〉 ∈ F} is an isomorphism of the initial
segment (A′, <′) onto an initial segment of (A,≤). (Check this)

3.8 Remark:
Define the following binary relation on well-orderings:
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(A,≤) ∼ (A′,≤′) iff (A,≤), (A′,≤′) are isomorphic.

Easy to see: ∼ is an equivalence relation, and ∼ is a class because ∼ can be described in the
language of set theory.

Notice: the equivalence class [(A,≤)]∼ is a proper class: For any a ∈ V the well-ordering
(A× {a}, <a) defined by

(〈z, a〉 <a 〈z′, a〉) iff z < z′

is isomorphic to (A,≤).
So if we form the quotient: (Well-orderings/ ∼) then the elements of this quotient are proper

classes, so this quotient is not a class. Our language of set theory does not have enough power to
describe this quotient.

We can also define an “ordering” <∗ on this quotient by

[(A,≤)] <∗ [(A′,≤′)] iff (A,≤) is isomorphic to a proper initial segment of (A′,≤′).

Easy to see that the definition of <∗ is correct, i.e. it does not depend on the choice of representa-
tives.

By 3.6 (b): <∗ is irreflexive. Easy: <∗ transitive. By 3.7: <∗ is trichotomic. Hence, <∗ is a linear
ordering of all equivalence classes (A,≤). With a little work, we can show that <∗ is a well-ordering.

Problem: None of these can be formulated with the language of set theory.
Solution: We show: there is a canonical way how to pick representatives from each equivalence
class. These representatives are called ordinals.

3.9 Definition: Ordinal
An ordinal is a transitive set well-ordered by the relation ∈.
Examples: 0, 1, 2, 3, ..., n, ..., ω.

3.10 Proposition:
Let x, y be ordinals. If x ⊆ y then x ∈ y or x = y. (Actually, we have “if and only if” here.)

Proof. Assume x 6= y. We show x ∈ y. Notice: y− x 6= ∅. So let x′ = the ∈ least element of y− x.
We show x = x′. This will do the job, as x′ ∈ y.

x′ ⊆ x : Notice x′ ⊆ y because x′ ∈ y and y is transitive. Because x′ is the ∈- least element of
y − x : x′ ∩ (y − x) = ∅.

So x′ ⊆ y − (y − x) = x.
Now to prove x ⊆ x′ : Let z ∈ x. Because x ⊆ y : z ∈ y. Because x′ ∈ y and y is linearly

ordered by ∈, we have: z ∈ x′ or z = x′ or x′ ∈ z.
If z = x′ then x′ ∈ x. Not possible since x′ ∈ (y − x).
If x′ ∈ z then x′ ∈ z ∈ x. Since x is an ordinal, z ⊆ x, so again x′ ∈ x. In either case, we get

x′ ∈ x, which is a contradiction as x′ ∈ (y − x) by definition. So z ∈ x′ must hold, and x ⊆ x′.

3.11 Proposition:
Let x, y be ordinals. Then x ∈ y or x = y or y ∈ x.
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Proof. Notice: x ∩ y is an ordinal: x ∩ y is transitive, as both x, y are. Also, x ∩ y ⊆ x so ∈ is a
well-ordering on x ∩ y, as it is a well-ordering on x.

We show: x ∩ y = x or x ∩ y = y. This will do the job: If x ∩ y = x then x ⊆ y, so by 3.10,
either x ∈ y or x = y.

Assume y 6= x ∩ y 6= x. This means that x− (x ∩ y) 6= ∅ (same as x− y). So we can let y′ be
the ∈-least element in x− y and let

x′ = the ∈-least element in y − x.

By the proof of 3.10, y′ = x ∩ y ⊆ y and x′ = x ∩ y ⊆ x. Here, x ∩ y plays the role of x′ in the
proof of 3.10.

So x′ = y′. However: x′ ∈ y − x and y′ ∈ x − y, so x′ 6= y′ as (y − x) ∩ (x − y) = ∅.
Contradiction.

3.12 Proposition:
∈ is a well-ordering on ordinals. In fact: if A 6= ∅ is any class of ordinals then A has an ∈-least

element.

Proof. Since we assume A 6= ∅, there is some ordinal a ∈ A. If a ∩ A = ∅ then a is the ∈-least
element of A, so we are done.

If a ∩ A 6= ∅ then a ∩ A is a set, by Separation: intersection of a set with a class is a set. Of
course a ∩ A ⊆ a. Since a is an ordinal, there is an ∈-least element of a ∩ A, call it a∗.

Claim: a∗ ∩ A = ∅, i.e. a∗ is the ∈-least element of A.
a∗ ∩ (a∩A) = ∅ by the choice of a∗. And a∗ ∩ (A− a) = ∅ because a∗ ∈ a, so a∗ ⊆ a since a is

transitive. Now: A = (a ∩ A) ∪ (A− a), so a∗ ∩ A = ∅. This verifies the minimality requirement.
We still have to see that ∈ is a strict linear ordering on ordinals:
Irreflexivity: x /∈ x for each ordinal x, otherwise {x} ⊆ x would be a set without an ∈-least

element.
Transitivity: x ∈ y ∈ z: because z is transitive: x ∈ z.
Linearity (Trichotomicity): Follows from 3.11.

3.13 Proposition:
If x is an ordinal and x′ ∈ x then x′ is an ordinal.

Proof. x′ ⊆ x since x is transitive. Hence, ∈ is a well-ordering on x′. So it suffices to check that x′

is transitive. So let u ∈ z ∈ x′. We want to see that u ∈ x′. Since x′ ⊆ x, u ∈ z ∈ x. Hence u ∈ x.
So: u, x′ ∈ x. By trichotomicity of ∈ on x: either u ∈ x′ or u = x′ or x′ ∈ u. Want to see u ∈ x′.
If u = x′: u ∈ z ∈ x′ = u. If x′ ∈ u : u ∈ z ∈ x′ ∈ u. In either case: u ∈ u because ∈ is a linear
ordering on x. But this is a contradiction, as ∈ is irreflexive on x.

3.14 Definition + Proposition:
We let On = {x|x is an ordinal}. Then On is a class. (x is an ordinal ⇐⇒ x is a transitive set

well-ordered by ∈).
Proof: exercise.

3.15 Proposition:
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On is a transitive class well-ordered by ∈.
Proof: This is just P.3.13 and P.3.12.

3.16 Corollary:
On is a proper class.
Proof: If On were a set then On ∈ On. Contradiction to the fact that it is well-ordered.

(Picture of On in V –straight line in a messy universe V )

3.17 Proposition:
(a) If x ∈ On then S(x) = x ∪ {x} is also an ordinal and it is the least ordinal larger than x.

We will write x+ 1 instead of S(x). We call S(x) = x+ 1 the (ordinal) successor of x.
(b) If A is a set of ordinals then

⋃
A is an ordinal and it is the least upper bound on A. That

is:
(i) x ∈

⋃
A or x =

⋃
A for all x ∈ A (i.e.

⋃
A is an upper bound— especially if we think of ∈ as

<).
(ii) If y ∈ On and (i) holds for y in place of x then

⋃
A ∈ y or

⋃
A = y. (i.e.

⋃
A is the least upper

bound).
In the future we will write sup(A) instead of

⋃
A and call this ordinal the supremum of A.

(c) If A is a proper class of ordinals then
⋃
A = On. Proof: Homework.

3.18 Remark:
This gives us another proof that On is a proper class: if On were a set, i.e. an ordinal, then⋃
On would be a set (an ordinal), as well as S(

⋃
On) would be a set (an ordinal), as S(

⋃
A) would

be larger than all ordinals. This is a problem.

3.19 Theorem: Recursion on Ordinals, transfinite recursion
Let G : V → V be a class function. (Recall: G tells us what to do at the “next step” of

recursion)
Then there is a unique class function F : On → V such that for all x ∈ On:

(∗)F (x) = G(F � x)

Proof. Uniqueness:

Assume both F and F ′ satisfy (∗). We show F = F ′. Assume not. Then
A = {x ∈ On|F (x) 6= F ′(x)} 6= ∅. So A is a nonempty class of ordinals. Therefore it has an

∈ −least element, call it a. Hence: if z ∈ a then z ∈ On but z /∈ A by the ∈ −minimality of a.
Hence F (z) = F ′(z) for all z ∈ a, i.e. F � a = F ′ � a.

Then by (∗): F (a) = G(F � a) = G(F ′ � a) = F ′(a) where the first and last equalities are by
(∗) and the second is because F (z) = F ′(z). Contradiction—this proves the uniqueness of F .

Taking the least element was important— this is where the well-ordering of ordinals came in.

Existence:
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Let F = {f |f is a set function, dom(f) ∈ On and (∗) holds for f in place of F}.
Then F is a class (exercise). Intuitively, F is the class of all approximations to F .

Claim 1:
Assume f , f ′ ∈ F . Then f , f ′ cohere, i.e. f(z) = f ′(z) for all z ∈ dom(f)∩ dom(f ′).
Proof: Almost the same as the proof of uniqueness: Assuming that f(z) 6= f ′(z) for some z

as above, look at the ∈ − least such z. Also notice: if z ∈ dom(f)∩ dom(f ′) then z ⊆ dom(f)∩
dom(f ′) as dom(f), dom(f ′) are ordinals. (Exercise).

Recall: we have a class function G : V → V and want to construct F : On → V such that
F (x) = G(F � x). We defined F = {f |f is a function and dom(f) ∈ On and (∀x ∈ dom(f))(f(x) =
G(f � x))}

Claim 1: If f, f ′ ∈ F then f, f ′ cohere, i.e. f(z) = f ′(z) for all z ∈ dom(f)∩ dom(f ′).
In particular, for each x ∈ On there is at most one f ∈ F such that dom(f) = S(x) = x ∪ {x}.
Claim 2: (Restated- this is just a cosmetic change): For each x ∈ On there is an f ∈ F with

dom(f) = S(x).
Suppose not; then we have an ∈ −least counterexample, call it a. So for each x ∈ a there is an

f ∈ F with dom(f) = S(x). By the remark after Claim 1, this function is unique. By Replacement
+ Separation, there is a set Fa such that

Fa = {f ∈ F|(∃x ∈ a)( dom(f) = S(x))}.

Even though F is a class, we know this is a set by the two axioms above.
Since Fa ⊆ F , all functions in Fa cohere, so f̄ =

⋃
Fa is a function. Moreover: By assumption

to each x ∈ a there is f ∈ Fa with dom(f) = S(x) = x∪ {x}. Hence: Each x ∈ a is in the domain
of f̄ , i.e. a ⊆ dom(f̄). Moreover: if x ∈ dom(f̄) then pick f ∈ Fa with dom(f) = S(x). Then
f ⊆ f̄ . Hence:

f̄(x) = f(x) = G(f � x) = G(f̄ � x) (∗)

where the first equality follows from f ⊆ f̄ , second since f ∈ F , and the last since f � x = f̄ � x.
Conclusion: f̄ ∈ F .
Now if a ∈ dom(f̄) we have a contradiction since f̄ � S(a) ∈ F by (∗). This is a contradiction,

as we assumed that a was a counterexample, i.e. there is no h ∈ F with dom(h) = S(a). If a /∈
dom(f̄). Then dom(f̄) = a In this case let f ∗ = f̄ ∪ {〈a,G(f̄)〉}.

In other words, f ∗ : S(a)→ V defined by

f ∗(x) =

{
f̄(x) for x ∈ a
G(f̄) for x = a

Then f ∗ ∈ F and dom(f ∗) = S(a); contradiction as in before.

Claim 3: To each x ∈ On there is exactly one f ∈ F such that dom(f) = S(x).
Now let F =

⋃
F . By Claims 1 and 2: F is a function and dom(F ) = On. By definition, F is

a class. It remains to see that F satisfies the recursion requirement. This is like in Claim 2.
Let x ∈ On. By Claim 2 there is some f ∈ F with dom(f) = S(x). Notice f ⊆ F i.e.

f(x) = F (x) for all x ∈ dom(f(x)).
Then F (x) = f(x) = G(f � x) = G(F � x) (f ⊆ F ; f ∈ F ; f ⊆ F , so f � x = F � x).
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SOME APPLICATIONS OF RECURSION

3.20 Proposition + Definition
If (A,≤) is a well-ordered set then there is exactly one ordinal α such that (A,≤) is isomorphic

to (α,∈), and the isomorphism is unique. We call this ordinal the order-type of (A,≤) and denote
by otp((A,≤)), or simply by otp(A) if the ordering is clear from the context.

Proof. The uniqueness of the ordinal follows from P.3.6 which says that no well-ordering is isomor-
phic to its proper initial segment: if (A,≤) ∼= (α,∈) and (A,≤) ∼= (β,∈) and α 6= β then α ∈ β or
β ∈ α. But obviously (α,∈) ∼= (β,∈). The uniqueness of the isomorphism follows from P.3.3. So
we have to verify the existence.

Idea: We attempt to define an isomorphism from some (α,∈) onto (A,≤) but we don’t know in
advance what α is. So instead of α we use On and we need a tool that will tell us where to stop.

Rigorously: Pick some s ∈ A. s will be a “sentinal.” We define

f : On → A ∪ {s}

by recursion:

f(x) =

{
the < −least element of A− f [x] for A− f [x] 6= ∅

s otherwise

Let α= the least ordinal x such that f(α) = s. We have to show that α exists, i.e. that f(x) 6= A
for some ordinal x. Then we show f � α : (α,∈)→ (A,≤) is an isomorphism.

10/28/09

Our function G in the theorem on recursion is G(u) =the least element in A − f [u] if this
set is nonempty and is s otherwise. This is the last explanation of G that will be given. Also,
G(f � x) = A− rng(f � x).

Claim 1: If x < y are ordinals and f(x), f(y) ∈ A then f(x) 6= f(y). Why: f(y) is the < −least
element in A− f [y]. But f(x) ∈ f [y], as x ∈ y. Hence f(x) /∈ A− f [y].

Claim 2: There is an x ∈ On such that f(x) = s. (Informally: at some point we run out of all
elements of A).

Why: if not, then f : On → A and by Claim 1 is injective. By the theorem on recursion: f
is a class, hence A′ = rng(f) is a set, since A is a set by Separation. Then f−1 : A → On is a
class function, so by Replacement rng(f−1) must be a set. However: rng(f−1) = On. Contradiction.

Let a = the least ordinal x such that f(x) = s. That is, f(a) = s and f(z) ∈ A for all z ∈ a.
Notice: f [a] = A, as otherwise since f(a) = s we have A − f [a] = ∅. So f [a] = A. So far we

have: f maps a bijectively onto A. To see that f � a is an isomorphism between (a,∈) and (A,≤),
it suffices to show:

Claim 3: If x, y ∈ a and x ∈ y then f(x) < f(y).
Assume x ∈ y. Then x ⊂ y so f [x] ⊂ f [y], so A− f [x] ⊃ A− f [y]. Hence:

25



f(x) = (the < −least element of A − f [x]) is smaller than the < −least element of A − f [y]
which is f(y).

Proposition 3.20 gives us a definable way how to pick representatives of well-orderings. To each
well-ordered set (A,≤) there is a unique ordinal a such that (A,≤) ∼= (a,∈). This ordinal is called
the order-type of (A,≤) and is denoted by otp((A,≤)). If the ordering < is clear from the context,
we write otp(A). The function otp: {x|x is a well-ordered set}→ On assigning otp((A,≤)) to
each well ordered set (A,≤) is a class function.

3.21 Convention:
In literature, ordinals are usually denoted by lower case greek letters: α, β, γ, ...

Also, we write α < β instead of α ∈ β.

3.22 Definition: Successor Ordinals/Limit Ordinals
Ordinals of the form S(α) are called successor ordinals. Ordinals that are not of this form are

called limit ordinals. In particular, 0 is considered a limit ordinal.

3.23 Remark:
Both successor and limit ordinals constitute proper classes.
If α is a limit ordinal and ᾱ < α then S(ᾱ) < α.

ORDINAL ARITHMETIC

3.24 Definition:
We define an operation + on ordinals by recursion as follows:
α + 0 = α
α + S(β) = S(α + β)
α + β = sup{α + β̄|β̄ < β}

In the future, we will frequently do definitions by recursion this way: We specify the definition
for 0, successor steps and limit steps separately. The map + : On ×On → On is a class.

For each α we define a map +α : On → On by +α(β) = α + β. Notice +α is a proper class.
Note: 1 + ω = ω but ω + 1 > ω.

Ordinal addition defines a class function + : On ×On → On.
If we let +α : On × On → On be the function defined by +α(β) = α + β then +α is a proper

class. So the collection of all functions +α is not a class. In order to see that + is a class, we use
the method of “truncation.” For each θ ∈ On we define function +θ : θ× θ → On so that the above
holds with +θ in place of + for all α, β < θ. Then +θ is a set. This can be proved as in the case of
ω:

— By construction by recursion: for each α < θ there is a unique function +θ
α : θ → On such

that:

+θ
α = α
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+θ
α(S(β)) = S(+θ

α(β)) and

+θ
α(β) = sup{+θ

α(β̄|β̄ < β}).

By Replacement and Separation,: Each function +θ
α is a set. Then by Replacement and Separation:

Aθ = {+θ
α|α < θ}

is a set. Hence +θ =
⋃
Aθ is a set.

Notice: +θ is unique satisfying (∗) ( i.e. if we replace + with +θ for all α, β < θ, as all +θ
α are

unique).
Hence: if θ < θ′ then +θ = +θ′ � (θ × θ) or in other words, +θ ⊆ +θ′ .
Easy to check: the function θ 7→ +θ is a class (i.e. {+θ|θ ∈ On} is a class) and
+ =

⋃
{+θ|θ ∈ On} is a class.

Notice: + � ω×ω is the usual addition of natural numbers, so one can prove it is commutative.
However, + in general is not commutative: 1 + ω = ω < ω + 1.

3.25 Proposition:
+ is associative: (α + β) + γ = α + (β + γ) for all α, β, γ ∈ On.

Proof. Induction on γ
— γ = 0: (α + β) + 0 = α + β = α + (β + 0).
— Successors: (α + β) + S(γ) = S((α + β) + γ) = S(α + (β + γ)) = α + (β + S(γ)).
— Limits: (α+β)+γ = sup{(α+β)+γ̄|γ̄ < γ} = sup{α+(β+γ̄)|γ̄ < γ} = sup{α+δ|δ < β+γ}

= α + (β + γ). (By (∗), I.H., (1), and (∗)).
To see (1): ≤ follows from the fact that {α+(β+ γ̄)|γ̄ < γ} ⊆ {α+δ|δ ≤ β+γ}, as β+ γ̄ ≤ β+γ

for all γ̄ < γ.
Next: ≥: If δ < β + γ = sup{β + γ̄|γ̄ < γ} then there is γ′ < γ such that δ ≤ β + γ′. Hence

δ < S(β+ γ′) = β+S(γ′) and if we say that S(γ′) = γ̄ then γ̄ < γ because γ is a limit. So for each
δ < β + γ we can find γ̄ < γ such that δ < β + γ̄.

3.26 Lemma:
For each α, β ∈ On: α ≤ α + β and β ≤ α + β. Also: if β > 0 then α < α + β.
Proof: By induction on β similarly as in the proof of P.3.25.

3.27 Lemma
For each α, α′, β, β′ ∈ On:
(a) If α ≤ α′ then there is a unique α̃ such that α′ = α + α̃. Moreover, if α < α′ then α̃ > 0.
(b) If β < β′ then α + β < α + β′.

Proof. (a) We first prove existence. By L.3.26 α′ ≤ α + α′. Let α̃ be the least ξ ∈ On such that
α′ ≤ α + ξ. α̃ exists as {ξ|α′ ≤ α + ξ} 6= ∅ by the above derivation. Then α′ = α + ξ.
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Why: If not, then either α̃ is a successor, say α̃ = S(γ). By the definition of α̃: α + γ < α′.
Hence S(α+γ) ≤ α′. But S(α+γ) = α+S(γ) = α+ α̃. So α+ α̃ ≤ α′. By we also know α′ ≤ α+ α̃
for all γ < α̃. Contradiction.

Or else: α̃ is a limit. Again by def of α̃ : α+ γ < α′ for all γ < α̃. Now α+ α̃ sup{α+ γ|γ < α̃}.
As before: α + α̃ = α′.

This ends the proof of existence.
It is also clear that if α < α′ then α̃ > 0. (If α̃ = o then α + α̃ = α + 0 = α < α′).
Now prove (b): Assume β < β′. By what we have proved: there is β̃ > 0 such that β′ = β + β̃.

Hence α + β < (α + β) + β̃ = α + (β + β̃) = α + β′.
Finally, prove uniqueness in (a): Assume we have α̃1, α̃2 such that α + α̃1 = α′ = α + α̃2. If

α̃1 6= α̃2, say α̃1 < α̃2, then by (b): α + α̃1 < α + α̃2. Contradiction.

From what we had:
S(α) = S(α + 0) = α + S(0). But S(0) = 1 ∈ ω.
So from now on we write “α + 1” in place of S(α).

Recall: From now on we write α + 1 for S(α).
Then the recursive definition of ordinal addition reads:

α + 0 = α
α + (β + 1) = (α + β) + 1
α + β = sup{α + β̄|β̄ < β}

Analogously we introduce ordinal multiplication and exponentiation:

α · 0 = 0
α · (β + 1) = α · β + α
α · β = sup{α · β̄|β̄ < β} and

α0 = 1
αβ+1 = αβ · α
αβ = sup{αβ̄|β̄ < β}

3.28 Proposition:
The following holds of ordinal operations.
(a) Ordinal addition and multiplication are associative, but no commutative. Their restrictions

to ω are commutative.
(b) α · (β + γ) = α · β + α · γ
(c)αβ+γ = αβ · αγ
(d)(αβ)γ = αβ·γ

(e) β < β′ implies the following:

—α + β < α + β′

—α · β < α · β′ for α > 0
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—αβ < αβ
′

for α > 1

Proof: The proofs of these facts use either methods similar to those we used in the case of
addition, or else these facts follow from the rest of them by direct computation.

3.29 Remark:
Ordinal arithmetic can be used to “code” proofs and thereby analyze their complexity. An

important ordinal is

ε0 = sup{ω, ωω, ..., ωω...
ω

, ...}

which codes all proofs in Peano Arithmetic.

3.30 Proposition:
Let β ≥ 2. Then for every ordinal ξ there are unique ordinals α, ρ such that ξ > β and
ξ = β · α + ρ.

Proof. Existence: Fix ξ. Let α∗ = min{α′ ∈ On|β · α′ > ξ}. α∗ exists as the class on the right
side is nonempty. Notice β · ξ ≥ ξ for all ξ ∈ On. (Proof: easy induction on ξ: easy exercise— so
β · (ξ + 1) ≥ ξ + 1 ≥ ξ).

Then notice: α∗ is a successor ordinal. Why: by definition: β · ᾱ ≤ ξ for all ᾱ < α∗. So if α∗

were a limit then

β · α∗ = sup{β · ᾱ|ᾱ < α∗} ≤ ξ because β · ᾱ ≤ ξ.

But by definition, β · α∗ > ξ. Contradiction.
So α∗ is a successor ordinal, say α∗ = α + 1. We then have:

β · α ≤ ξ < β · (α + 1) = β · α + β.

By L.3.27 there is some ρ such that ξ = β · α + ρ. Now notice that ρ < β because otherwise we
would have ρ ≥ β and ξ = β ·α+ ρ ≥ β ·α+ β = β · (α+ 1) = β ·α∗. But we know that β ·α∗ > ξ.
This proves existence.

Uniqueness: Assume β ·α+ρ = ξ = β ·α′+ρ′ where ρ, ρ′ < β. We show that α = α′ and ρ = ρ′.
If α 6= α′ then WLOG α < α′. But then ξ = β ·α+ρ < βα+β = β ·(α+1) ≤ β ·α′ ≤ βα̇′+ρ′ = ξ.

So we would get ξ < ξ. Contradiction. Hence α = α′ Similarly for ρ : if ρ 6= ρ′ then WLOG ρ < ρ′,
but then ξ = β · α + ρ < β · α + ρ′ = ξ. Contradiction.

3.31 Proposition: (Cantor normal form)
Let β ≥ 2. Then for every ξ ∈ On there are unique
— n ∈ ω
— ε1 > ε2 > ... > εn
— α1, α2, ..., αn all < β and all 6= 0.

such that ξ = βε1 · α1 + βε2 · α2 + ...βεn · αn.

Proof. Claim 1: Assume ε1 > ε2 > ... > εn and α2, α3, ..., αn < β. Then

βε1 > βε2 · α2 + βε3 · α3 + ...+ βεn · αn.
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Proof: By induction on ε1.
βε2 ·α2 + βε3 ·α3 + ...+ βεn ·αn < βε2 ·α2 + βε2 = βε2 · (α2 + 1) ≤ βε2 · β = βε2+1 ≤ βε2 . Because

ε2 < ε1 ⇒ ε2 + 1 ≤ ε1.
This ends the proof of Claim 1.

Claim 2: ξ ≤ βξ whenever β ≥ 2.
Proof: Easy induction on ξ. Exercise.
Now fix ξ ∈ On. Then ξ < ξ + 1 ≤ βξ+1 Then there is a least ordinal ε such that ξ < βε.
Using continuity of exponentiation, similarly as in the proof of P.3.30 we show that ε is a

successor ordinal, say ε = ε1 + 1. So we have βε1 ≤ ξ ≤ βε1+1.
By P.3.30 there are unique α1 and ρ < βε1 such that ξ = βε1 · α1 + ρ.
Notice α1 < β1 as otherwise ξ = βε1 · α1 + ρ ≥ βε1 · β + ρ = βε1+1 + ρ ≥ βε > ξ.
Also α1 6= 0 otherwise ξ = ρ < βε1 which is impossible by the minimality of ε.
Now ρ < βε1 ≤ ξ, so we can apply the induction hypothesis to ρ: There are ε2 > ... > εn and

α1, ..., αn < β and all 6= 0 such that

ρ = βε2 · α2 + ...+ βεn · αn
Notice: ε2 < ε1 since ρ < βε1 By substitution:

ξ = βε1 · α1 + ρ = βε1 · α1 + βε2 · α2 + ...+ βεn · αn and εi , αi are as desired.

11/04/09
We want to prove uniqueness: that is. given β ≥ 2, n, n′ ∈ ω, ordinals α1, ..., αn, α′1, ..., α

′
n′ all

less than β and all 6= 0, and descending sequences ε1 > ε2 > ... > εn and ε′1 > ... > ε′n′ .

We are assuming:

(∗) βε1 · α1 + βε2 · α2 + ...+ βεn · αn = βε
′
1 · α′1 + βε

′
2 · α′2 + ...+ βε

′
n′ · α′n′ .

Want to show that n = n′, αi = α′i and εi = ε′i for all i ∈ {1, ..., n′}. WLOG: n ≤ n′. Assume
we have some i such that 〈εi, αi〉 6= 〈ε′i, α′i〉; assume also that i is the least such. What if εi 6= ε′i.
WLOG assume εi < ε′i.

βε1 ·α1+...+βεi ·αi+βεi+1 ·αi+1+...+βεn ·αn < βε1 ·α1+...+βεi ·αi+βεi = βε1 ·α1+...+βεi ·(αi+1)
≤ βε1 · α1 + ...+ βεi+1 ≤ βε1 · α1 + ...+ βε

′
i + βε

′
i+1 · α′i+1 + ...+ βε

′
n′ = βε

′
1 · α′1 + ...+ βε

′
n′ · α′n′ , since

by choice of i: (εj, αj) = (ε′j, α
′
j) for all j < i.

Where βεi+1 · αi+1 + ...+ βεn · αn < βεi by Claim 1,
And αi + 1 ≤ β.
And εi < ε′i

This is a contradiction, since the two sums are assumed to be the same. Hence εi = ε′i. Hence
αi 6= α′i, so again assume WLOG that αi < α′i. Similarly we compute

βε1 ·α1+...+βεi ·αi+βεi+1 ·αi+1+...+βεn ·αn < βε1 ·α1+...+βεi ·αi+βεi = βε1 ·α1+...+βεi ·(αi+1)
≤ βε1 · α1 + ...+ βεi · α′i + ...+ βε

′
n′ · αn′ = βε

′
1 · α′1 + ...+ βε

′
n′ · α′n

Contradiction again.
Conclusion: εi = ε′i and αi = α′i for all i ∈ {1, ..., n}. Now if n < n′ then the sum on the right in

(∗) is a proper extension of the sum on the left. Since we assume that all α′i 6= 0, the sum on the
right is larger than the sum on the left. Contradiction. So n = n′.
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3.32 Definition + Proposition:
If (A,≤) is a linear ordering then the set of all open intervals in (A,≤) constitutes a base for a

topology. This topology is called the interval topology ; so the open sets are precisely unions of open
intervals. All topological notions will be used in the usual sense, e.g. closed sets are complements
of open sets; x is a limit point of B ⊆ A iff every open interval containing x has a nonempty
intersection with B. Also, B is closed iff it contains all its limit points. The notion of a continuous
map is also standard: inverse images of open sets are open.

However: it is not always the case that we have a sequence 〈bn|n ∈ ω〉 of elements of B converg-
ing to x if x is a limit point of B.

3.33 Definition + Proposition:
(a) A class A of ordinals is closed iff for each α ∈ On, α a limit ordinal: A ∩ α is unbounded in

α ⇒ α ∈ A. This is true because α is a limit point of A iff A ∩ α is unbounded in A. Notice: if
α < β then (α, β] = (α, β + 1) is an open interval.

(b) Let α be a limit ordinal. A set C ⊆ α is closed unbounded in α iff C is unbounded in α and
is closed in the interval topology of α. (Notice: in this case α ∈ lim(C)−C). I.e. C contains all its
limit points that are < α.

(c) Let α be a limit ordinal or α = On. A class function f : α→ On is normal iff
(i) f is strictly increasing. I.e. ξ < ξ′ ⇒ f(ξ) < f(ξ′)
(ii) f is continuous, i.e. f(ξ) = sup{f(ξ̄)|ξ̄ < ξ} whenever ξ is a limit ordinal.

(d) Ordinal addition, multiplication and exponentiation are normal as functions of the second
argument.

(e) (i) If α, β are limit ordinals and f : α→ β is normal with rng(f) unbounded in β (we also
say f is cofinal in β) then rng(f) is a closed unbounded subset of β.
(ii) If β is a limit ordinal and C ⊆ β is a closed unbounded then there are an ordinal α and a normal
function f : α→ β such that rng(f) = C.
(iii) The obvious analogy is true of class function f : On → On and closed proper classes of On.
(Homework)

The third application of recursion: The hierarchy Vα. This hierarchy is defined as follows.
V0 = ∅
Vα+1 = P(Vα)
Vα =

⋃
ᾱ<α Vᾱ.

WF=
⋃
α∈On Vα

Let us stress: We still work in ZF without Axiom of Foundation. By the theorem on recursion:
the function α 7→ Vα is a class, each Vα is a set and also WF is a class. WF is called the well-founded
core of V .

By easy recursion, we get: α ⊆ Vα for all α ∈ On. So On ⊆ WF , so WF is a proper class.
By Homework + Recursion, all Vα are transitive. Also: WF is transitive.
By easy recursion, α < β ⇒ Vα < Vβ and Vα ⊆ Vβ. (Exercise.)
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3.34 Proposition:
All sets in WF are well-founded. (This is why WF is called well-founded core.)

3.35 Theorem (ZF)
WF= V . (So Axiom of Foundation implies WF= V .)

Proof. We know WF⊆ V . So assume WF6= V .
By Axiom of Foundation, we would like to pick an ∈ -minimal element in V−WF. However,

V−WF may be a proper class, and Axiom of Foundation only guarantees the existence of ∈ -minimal
elements for sets. So we have to replace V−WF by a set.

We do the following: Pick a ∈ V−WF. We know trcl({a}) is a set and a ∈ trcl({a}) (in general
a /∈ trcl(a)).

So trcl({a})−WF is a nonempty set because it contains a. By Axiom of Foundation, there is
an ∈ -minimal element of trcl({a})−WF, call it x.

Claim: x ⊆ WF.
Proof: Pick z ∈ x. Because x ∈ trcl({a}) and trcl({a}) is a transitive set, we have z ∈ trcl({a}).

However: x is an ∈ -minimal element of trcl({a})−WF, hence z /∈ trcl({a})−WF.
So: z ∈ trcl({a}) and z /∈ trcl({a})−WF ⇒ z ∈WF. End proof of claim.
Each z ∈ x is in some set of the form Vα. So we can define a map f : x→ On by

f(z) = the least α ∈ On such that z ∈ Vα.

Then f is a class function. Since x is a set, by Replacement: rng(f) is a set. So we have some
ordinal γ such that rng(f) ⊆ γ. This means that each z ∈ x is an element of some α < γ, so
x ⊆ Vγ. Hence, x ∈ Vγ+1 ⊆WF, i.e. x ∈WF. Contradiction.

3.36 Corollary + Definition: (ZF)
By the above, to each set x we can assign the least ordinal α such that x ∈ Vα+1. This ordinal

is called the rank of x and we denote it by rank(x). Examples:

rank(∅) = 0
rank(1) = 1
rank(n) = n for all n ∈ ω.
rank(ω) = ω.

4. Axiom of Choice (ZF)

4.1 Definition: Selector
Let A be a set. A selector on A is a map f : A→

⋃
A such that

f(a) ∈ a whenever a 6= ∅.

Intuitively: A selector on A selects an element from each nonempty a ∈ A.

4.2 Proposition:
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The following are equivalent:

(a) Axiom of Choice (AC)
(b) On every set there is a selector.

Remark: the formulation of AC required ∅ /∈ A and all elements of A are mutually disjoint. In
P.4.2(b) we don’t require this.

Proof: Homework.

Week 7

Proposition: AC is equivalent to the statement that every set has a selector.
Selector is a function f : A→

⋃
A such that f(a) ∈ a for every a 6= ∅, a ∈ A.

4.3 Definition: Uniformization
Let R ⊆ A× A. A function f uniformizes R iff dom(f) = dom(R) and f ⊆ R.

Consider:
A = 〈Ai|i ∈ I〉 such that A : I → {Ai|i ∈ I} defined by A(i) = Ai.

4.4 Definition: Cartesian Product
Let 〈Ai|i ∈ I〉 be nonempty indexed sets. Define the Cartesian Product

∏
i∈I Ai, to be the set

of all functions f with dom(f) = I and for each i, f(i) ∈ Ai.

4.5 Proposition:
The following are equivalent:
(a) Axiom of Choice
(b) For every set A, binary relation R ⊆ A× A, there is a function which uniformizes R.
(c) For every system 〈Ai|i ∈ I〉 of nonempty sets,

∏
i∈I Ai 6= ∅. Proof: homework.

Let (P,≤) be a partial order. (poset).
Recall: the above is such that ≤ is a binary relation on P which is reflexive, transitive, and

antisymmetric. We also define x < y ⇔ x ≤ y and x 6= y.

4.6 Definition: Maximal element of a poset
Let (P,≤) be a poset. x ∈ P is a maximal element if ∀y ∈ P , y ≤ x.
Remark: here, maximal does not necessarily mean largest.

Example 1: If (P,≤) is linear, then maximal element is the largest, since any two elements are
comparable.

Example 2: Let V be a vector space. P = {L ⊂ V |L is linearly independent }. Consider (P,⊆).
In (P,⊆), B ⊂ V is a basis iff B is a maximal element. There may be no largest because some
elements in P are not comparable.

Definition— chain:
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Let (P,≤) be a poset.
• X ⊆ P is a chain if (X,≤) is a linear ordering.
• p ∈ P is an upper bound for X ⊆ P if (∀q ∈ X)(q ≤ p). p is a strict upper bound if

(∀q ∈ X)(q < p).

4.7 Theorem:
The following are equivalent:
(a) AC
(b) (Zorn’s Lemma) if (P,≤) is a poset such that for each chain X ⊆ P , there is an upper

bound, then for every p ∈ P , there is a maximal element q such that p ≤ q.
(c) (Zermelo’s Theorem) Every set can be well-ordered.

Proof. (a)⇒ (c) “ classical proof ”
Let (P,≤) be a poset such that every chain has an upper bound and let p ∈ P . Let F : P(P )→ P

be a selector. I.e. (∀X ⊆ P ) (F (X) ∈ X).
Idea: construct p ∈ b0 ⊂ b1 ⊂ ... ⊂ bi ⊂ ... an “ increasing sequence ” of chains. Then take⋃
B = b∗. Show b∗ is a chain. Take an upper bound q for b∗. Show q is maximal element.
For every chain b ⊂ P , let Ab be the set of all strict upper bounds. Define B to be the set of

chains b ⊂ P such that
(i) p = min(b).
(ii) For every initial segment b̄ of b, min(b− b̄) exists and is equal to F (Ab̄).
Recall: b̄ is an initial segment of b if b 3 x ≤ y ∈ b̄⇒ x ∈ b̄.

Claim 1: If b1, b2 ∈ B, then b1 ⊂ b2 or b2 ⊂ b1.

Proof: Let b1, b2 ∈ B. Let

b̄ =
⋃
{c ⊆ b1 ∩ b2|c is an initial segment of b1 and b2}

Note that b̄ is an initial segment of b1, b2 by definition of initial segment. Suppose b̄ 6= b1 and
x1 = b̄ 6= b2. Then min(b1 − b̄) = F (Ab̄) = min(b2 − b̄) = x2. Contradiction, so b̄ = b1 or b̄ = b2.
End proof of claim 1.

Claim 2: Let b∗ =
⋃
B. Then b∗ ∈ B and b∗ =

⋃
B is a chain and every initial segment b ⊂ b∗

is in B.

Proof: Let b ∈ B. Show b is an initial segment of b∗. Suppose q ≤ r such that q ∈ b∗ and r ∈ b.
Since q ∈ b∗, let bq ∈ B such that q ∈ bq. By Claim 1, bq is a proper initial segment of b or b is an
initial segment of bq.

Case 1: bq ⊆ b so q ∈ b.
Case 2: b ⊆ bq. Then bq 3 q ≤ r ∈ b. So b = bq by definition. So, every element of B is an initial

segment of b∗. Next, we show that b∗ ∈ B. So we need to show that min(b∗) = p and b̄ is a proper
initial segment of b∗.
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Let q ∈ b∗ − b. Let bq ∈ B such that q ∈ bq. b̄ is an initial segment of b∗ and bq is an initial
segment of b∗, then b̄ is an initial segment of bq. Because if x ≤ y ∈ b̄ (bq ⊆ b∗) so x ∈ b̄. And
bq ∈ B. By (ii) for bq we get min(bq − b̄) (=min(b∗ − b̄) = F (Ab̄)).

Subclaim: min(bq − b̄) = min(bq − b) (let = r).
Proof: if x ∈ b̄ then x ≤ r. If y ∈ b∗ such that ∀x ∈ b̄ , x ≤ y, then let by ∈ B such that y ∈ by.

by is an initial segment of bq or vice versa. Let y′ ∈ by ∩ (bq − b̄) such that y′ ≤ y. That implies y′

is an upper bound for b̄ which implies r ≤ y′ ≤ y. So b∗ ∈ B.

Let q be an upper bound for b∗ ∈ B. b∗ is a chain and so it has an upper bound. This leads to:

Claim 3: Let q be an upper bound for b∗, then q is a maximal element.
Otherwise, let q′ ∈ P such that q < q′, q′ ∈ Ab∗ . q < q′ ⇒ q′ ∈ Ab∗ 6= ∅ so b∗ ∪ {F (Ab∗)} is a

new chain in B. But b∗ =
⋃
B so that is a contradiction.

So (a)⇒(b)

Now we do the modern proof:

Proof. Let b 7→ Ab as above (Ab is a set of strict upper bounds) and let F : P(P )→ P be a selector.
Let p ∈ P and let s /∈ P . Define the class function g : On → P ∪ {s} by

g(α) =


p if α = 0

F (Ag[α]) if Ag[α] 6= ∅
s otherwise

Given g � α , if possible we take g(α) = F (chain so far).
Claim 1: If α < β , g(α), g(β) ∈ P then g(α) < g(β).
Proof: g(β) = F (Ag[β]) and Ag[β] 6= ∅. g(β) ∈ Ag[β] and g(α) ∈ g[β] ⇒ g(α) < g(β) by the

definition of b 7→ Ab. End proof of claim.
Since P is a set, there is some α such that g(α) = s. Otherwise, g : On → P ∪ {s} is injective

and a contradiction ensues. Take the least α such that g(α) = s. Then by Claim 1, g[α] is a chain
in P . Let q be an upper bound for it. Want to show that q is maximal. Note: p ≤ q. Otherwise,
there is q′ ∈ P such that q < q′ but then q′ ∈ Ag[α] and g(α) = s⇒ Ag[α] = ∅. Contradiction.

Now, we prove (c)⇒(a).

Proof. Let A 6= ∅ be a set and let ≺ be a well ordering of
⋃
A. Define F as follows for nonempty

a ∈ A:

F (a) = the ≺-minimal element of a.

Then, F is a selector.
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Week 8:

Recall: Theorem 4.7 stated the equivalence of the Axiom of Choice, Zorn’s Lemma and the fact
that Every set can be well-ordered. We proved that AC implies Zorn’s Lemma and also that the
well-ordering of every set implies AC.

We prove (b) ⇒ (c) the classical way:

Proof. Given is a setA. We construct a well-ordering onA by looking at the set of all approximations
to this well-ordering and applying Zorn’s Lemma. We let

P = the set of all ordered pairs (a, r) where a ⊆ A and r is a well-ordering on a.

Notice: r ⊆ a× a. P is the set of all approximations to a well-ordering on A.
For (a, r) and (b, s) ∈ P we let

(a, r) ≤ (b, s) iff (a ⊆ b and s is an end-extension of r).

Recall: (b, s) is an end-extension of (a, r) iff r ⊆ s and if (x, y) ∈ s and y ∈ a then x ∈ a (there
are no holes). This says that all elements of b− a are past all elements of a in the ordering s.

Claim 1: (P,≤) is a partial ordering (in the nonstrict sense).
Proof: exercise.
Goal: First using Zorn’s Lemma, we show that there is a maximal element in (P,≤) and next,

we show that any maximal element of (P,≤) is a well-ordering on A.
Claim 1: The poset (P,≤) satisfies Zorn’s condition.
Proof: Want to show: if B is a chain in (P,≤), then B has an upper bound. We let

a∗ =
⋃
{a ∈ P(A)|(∃r)((a, r) ∈ B)}

r∗ =
⋃
{r ∈ P(A× A)|(∃a)((a, r) ∈ B)}

So a∗ is the union of all first components. And obviously a∗ ⊆ A and r∗ ⊆ a∗ × a∗.
We show that r∗ is a well-ordering on a∗ × a∗.

Linearity: Assume x, y ∈ a∗. This means that we can find some (a, r), (a′, r′) ∈ B such that
x ∈ a and y ∈ a′. B is a chain so

either (a, r) ≤ (a′, r′) or (a′, r′) ≤ (a, r).

Assume WLOG (a, r) ≤ (a′, r′). Hence, a ⊆ a′, so x, y ∈ a′.
Because r′ is a linear ordering on a′: (x, y) ∈ r′ or (y, x) ∈ r′. But r′ ⊆ r∗ by construction, so

(x, y) ∈ r∗ or (y, x) ∈ r∗. That proves linearity.

Irreflexivity + Transitivity: Exercise.

So far we have that r∗ is a linear ordering on a∗. Now we show that it is a well-ordering:

Let ∅ 6= X ⊆ a∗. We look for a least element of X with respect to r∗.
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Consider x ∈ X. Since a∗ is the union of all sets a where (a, r) ∈ B, we can find some (a, r) ∈ B
such that x ∈ a. The point is that a∗ is an end-extension of a, or equivalently, a is an initial segment
of a∗. Because r is a well-ordering on a, there is a least element of X ∩ a with respect to r; call it
x∗. We show that (x∗, y) ∈ r∗ whenever y ∈ a∗, y 6= x.

If y ∈ a: Then (x∗, y) ∈ r by the definition of x∗, so r ⊆ r∗.
If y /∈ a: Then there is some (a′, r′) ∈ B such that y ∈ a′. So actually y ∈ a′−a. But B is a chain,

so either (a, r) ≤ (a′, r′) or (a′, r′) ≤ (a, r). Since y ∈ a′ − a, the latter cannot hold. Otherwise,
we would have a′ ⊆ a. So necessarily (a, r) ≤ (a′, r′). This means that r′ is an end-extension of r.
Since y ∈ a′ − a: (x∗, y) ∈ r′. So (x∗, y) ∈ r∗, as r′ ⊆ r∗.

This shows that x∗ is the least element of a∗ with respect to r∗. This completes the proof that
r∗ is a well-ordering on a∗, so (a∗, r∗) ∈ P .

Moreover, by construction: we have that a ⊆ a∗ and r ⊆ r∗ whenever (a, r) ∈ B. So in order to
show that (a, r) ≤ (a∗, r∗), we have to prove:

r∗ is an end-extension of r.

And to see this, it remains to prove: if x ∈ a and y ∈ a∗ − a then (x, y) ∈ r∗.
By construction, there is some (a′, r′) ∈ B such that y ∈ a′. As in the case “y /∈ a” above, show

that (a, r) ≤ (a′, r′), so (x, y) ∈ r′ ⊆ r∗.
Summary: (a, r) ≤ (a∗, r∗) for all (a, r) ∈ B. I.e. (a∗, r∗) is an upper bound on B. That ends

the proof of Claim 1.
By Zorn’s Lemma, (P,≤) has a maximal element, call it (â, r̂).

Claim 2: â = A (Hence r̂ is a well-ordering on A).
Proof: If not, A− â 6= ∅. So we pick some x ∈ A− â. Let

ã = â ∪ {x} so ã ) â.
r̃ = r̂ ∪ (â× {x}).

Then (ã, r̃) ∈ P and (â, r̂) < (ã, r̃).
It is sufficient to show that (â, r̂) ≤ (ã, r̃) because â < ã. Proof of these facts: Exercise.
But this contradicts the fact that (â, r̂) is maximal in (P,≤). So necessarily â = A.
This ends the proof of Claim 2, (b)⇒ (c) and of Theorem 4.7.

Recall that we proved the equivalence of the following three:
(a) AC
(b) Zorn’s Lemma
(c) Zermelo’s Theorem (Well-ordering principle).

4.8 Theorem:
The following are equivalent for every set A:
(a) There is a selector on P(A).
(b) A can be well-ordered.

Proof. (b)⇒ (a) same as (c)⇒ (a) in T.4.7. If < is a well-order on A then the function f : P(A)→ A
defined by f(x) = the < −least element of x for x 6= ∅ is a selector on P(A).
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(a)⇒ (b) homework. Hint: construction by recursion. Keep picking elements of A and put them
one after another. That is guided by the selector. Similar to proof that ordinals are isomorphic to
some well-ordering.

SOME APPLICATIONS OF AC:

4.9 Example:
AC implies that every vector space has a basis.

Proof. We use Zorn’s Lemma. Our posets P will consist of all approximations to a basis:
Fix a vector space W over some field F .
P = the set of all linearly independent X ⊆ W .
Ordering: ⊆.
Obviously, (P,⊆) is a partial ordering. We check that (P,⊆) satisfies Zorn’s condition. Let B

be a chain in (P,⊆). Then
⋃
B is an upper bound on B. So clearly X ⊆

⋃
B whenever X ∈ B, so

it suffices to verify that
⋃
B is linearly independent.

Let v1, ..., vn ∈
⋃
B. Then to each n we have some Xn ∈ B such that vn ∈ Xn. Since B is a chain

for each i, j ∈ {1, ..., n} we have Xi ⊆ Xj or Xj ⊆ Xi. Let k be such that Xk is the largest among
them, i.e. Xi ⊆ Xk for all i ∈ {1, ..., n}. Then v1, ..., vn ∈ Xk. Since Xk is linearly independent
set of vectors: v1, ..., vn are linearly independent. Conclusion:

⋃
B is a linearly independent set of

vectors, i.e.
⋃
B ∈ P . It follows that

⋃
B is an upper bound on B in (P,⊆).

By Zorn’s Lemma: (P,⊆) has a maximan element, call it Z. So Z is a linearly independent set
of vectors. We show that Z generates the entire W . So pick any v ∈ W . By maximality of Z, we
have that Z∪{v} is linearly dependent, so we have finite set of vectors {z1, ..., zn} ⊆ Z and elements
α1, ..., αn ∈ F such that at least one of the alphas is nonzero and α1z1 = ... + αnzn + αv = 0W .
But α 6= 0 otherwise we would have α1z1 = ...+ αnzn = 0W , which is impossible since z1, ..., zn are
linearly independent.

It follows that v = −(α1

α
z1 + ...+ αn

α
zn)

4.10 Example:
AC implies that every partial ordering can be linearized. This means if (A,R) is such that A is

a set and R ⊆ A × A is a partial ordering on A, then it is possible to find a linear ordering R′ on
A such that for all a, b ∈ A:

〈a, b〉 ∈ R⇒ 〈a, b〉 ∈ R′

This can be briefly expressed as: R ⊆ R′.

Proof. Again we apply Zorn’s Lemma to the poset of all approximations to R′.
P = the set of all partial orderings Q on A that extend R, i.e. R ⊆ Q.
Ordering: ⊆.
Trivial: (P,⊆) is a poset.
Easy to check: (P,⊆) satisfies Zorn’s condition.
If B is a chain in (P,⊆) then

⋃
B ∈ P . By Zorn’s Lemma, (P,⊆) has a maximal element R′.

So R′ is a poset. We verify that R′ is linear.
What if not: then we have x, y ∈ A that are not comparable under R′. We show that there is

an R∗ ∈ P that properly extends R′. This will contradict the maximality of R′. We let
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R∗ = R′ ∪ {〈a, b〉 ∈ A× A|〈a, x〉 ∈ R′ ∧ 〈y, b〉 ∈ R′}

We check that R∗ is a partial ordering: (picture)
Reflexivity: Trivial, as R∗ ⊇ R′ ⊇ R and R is reflexive.
Antisymmetry: Need to see: 〈a, b〉 ∈ R∗, 〈b, a〉 ∈ R∗ then a = b. Obviously this is true if

〈a, b〉 ∈ R′, so we focus on the case where 〈a, x〉 ∈ R′ and 〈y, b〉 ∈ R′. In this case we show that
〈b, a〉 /∈ R′. Hence 〈b, a〉 /∈ R∗. If 〈b, a〉 ∈ R′ we would have:
〈y, b〉 ∈ R′ and 〈a, b〉 ∈ R′ and 〈a, x〉 ∈ R′ so by transitivity, 〈y, x〉 ∈ R′. This is a contradiction

as x, y are not comparable under R′.
Transitivity: assume 〈a, b〉 ∈ R∗ and 〈b, c〉 ∈ R∗. Want to show: 〈a, c〉 ∈ R∗. Again it suffices to

focus on the case where 〈a, b〉 /∈ R′ or 〈b, c〉 /∈ R′. For instance, assume 〈a, b〉 /∈ R′. Then 〈a, x〉 ∈ R′
and 〈y, b〉 ∈ R′. Since 〈b, c〉 ∈ R∗, we must have 〈b, c〉 ∈ R′, by the argument for antisymmetry
above. So we have:

〈a, x〉 ∈ R′ and 〈y, b〉 ∈ R′ and 〈b, c〉 ∈ R′ so 〈y, c〉 ∈ R′

so 〈a, c〉 ∈ R∗. The case where 〈b, c〉 /∈ R′ is done similarly.

4.11 Example: Non-measurable sets
A measure on a set A is a function µ : P(A)→ [0,∞] ⊆ R such that whenever {Xi|i ∈ ω} is a

family of mutually disjoint subsets of A, we have:

µ(
⋃
i∈ωXi) =

∑
i∈ω µ(Xi)

The following can be derived:
— µ(∅) = 0
— X ⊆ Y ⇒ µ(X) ≤ µ(Y )
— Xi ⊆ Xi+1 ⇒ µ(

⋃
i∈ωXi) = supi∈ω µ(Xi)

On Rn we have Lebesgue measure that has the following additional properties:
— µL([0, 1]) = 1
— µL({r}) = 0 (we say that µL is non-atomic).
— For r ∈ R and any X ⊆ R let

r +X = {r + x|x ∈ X}

The operation X 7→ r +X is called translation by r. Then µL is translation invariant i.e.

µL(r +X) = µL(X) for all X ∈ dom(µL)

The Axiom of Choice implies that dom(µL) ( P(R), i.e. µL cannot be defined for all X ∈ P(R).
In other words, there is a µL- non-measurable set.
In fact: We show there is no translation-invariant non-trivial measure that measures all subsets of
R. (Non-trivial means that 0 < µ((a, b)) <∞ if a < b).

Let µ be a translation-invariant measure on R. We assume that R is well-orderable and con-
struct a non-measurable set X.

Define a binary relation ∼ on R by
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x ∼ y iff x− y ∈ Q

Easy to check that ∼ is an equivalence relation on R and that for every x ∈ R : [x] = x+Q.
Using the fact that R is well-orderable we can find a set X ⊆ R such that X∩ [x] has exactly one

element for each x ∈ R, i.e. X picks exactly one element from each equivalence class. Moreover,
we can construct X in such a way that X ⊆ (0, 1). This is because each equivalence class is dense
in R by the above definition of [x].

Claim: X is not µ-measurable.
If X were µ-measurable then µ(X) <∞ because X ⊆ (0, 1).

Case 1: If µ(X) = 0.
Notice: R =

⋃
q∈Q q + X (if y ∈ R then y ∈ [x] for some x ∈ X. But then if we let q = y − x

then q is a rational number and y = q + x).
But if q 6= q′ then (q+X)∩ (q′+X) = ∅. Why: if q+x = q′+x′ then x−x′ = q− q′ ∈ Q. But

x, x′ ∈ X so if x 6= x′ then x, x′ come from different equivalence classes, so x 6∼ x′ i.e. x− x′ /∈ Q.
So µ(R) = µ(

⋃
q∈Q q +X) =

∑
q∈Q µ(q +X) =

∑
q∈Q µ(X) =

∑
q∈Q 0. Contradiction.

Case 2: µ(X) > 0. Say µ(X) = δ > 0.
Then

⋃
q∈Q∩(0,1) q +X ⊆ (0, 2) since X ⊆ (0, 1). So as in Case 1:

∞ > µ((0, 2)) ≥ µ(
⋃
q∈Q∩(0,1) q +X) =

∑
q∈Q∩(0,1) µ(q +X) =

∑
q∈Q∩(0,1) µ(X) =∑

q∈Q∩(0,1) δ =∞.

4.12 Example: Filter
Let A be a set. A filter on A is a family F ⊆ P(A) such that:
— A ∈ F and ∅ /∈ F
— F is upwards closed, i.e. if A ∈ F and A ⊆ B then B ∈ F .
— If A,B ∈ F then A ∩B ∈ F .
Intuitively, a filter determines which subsets of A are “large”.

For instance:
(a) Consider A = (0, 1) and

F = {X ⊆ A|µL(X) = 1}

Then F is a filter on A.
(b) Consider given arbitrary infinite set A, let

F = {X ∈ P(A)|A−X is finite}

This is called the Frech ér filter on A. In analysis we use this to determine convergence of se-
quences.

A filter U on a set A is an ultrafilter iff for every X ∈ P(A):

X ∈ U or A−X ∈ U
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Notice: if F is a filter then we cannot have both X and A−X inside F .

Prime Ideal Theorem (PID): If A is a set and F is a filter on A then F can be extended to an
ultrafilter. That is, there is an ultrafilter U on A such that F ⊆ U .

We defined a filter F ⊆ P(A) on a set A as a family such that:
—A ∈ F , ∅ /∈ F
—F is closed upwards.
—F is closed under intersections.

A filter U on a set A is an ultrafilter iff X ∈ U or A−X ∈ U for all X ∈ P(A).
Notice: If F is a filter then F is closed under finite intersections:

X1, ..., Xn ∈ F ⇒ X1 ∩X2 ∩ ... ∩Xn ∈ F .

The proof is trivial.

If X ∈ P(A) then FX = {Z ∈ P(A)|X ⊆ Z} is a filter on a set A. (Easy)
Filters of the form FX are called principal filters.

If U is an ultrafilter on a set A and a ∈ A then for every X ∈ P(A) we have

a ∈ X or a ∈ A−X

This tells us that

Ua = {Z ∈ P(A)|a ∈ Z}

is an ultrafilter on A. Following the terminology from above: Ua = F{a} is a principal ultrafilter
on A.

If we drop AC it may happen that ultrafilters on A are principal.
Notice also: If A is finite, then all ultrafilters on A are principal. (Easy).

Let A be a set. A family B ⊆ P(A) is called a filter base iff for every finite sequence of sets
Z1, ..., Zn ∈ B : Z1 ∩ ... ∩ Zn 6= ∅.

So given a filter base B, we let

F(B) = {X ∈ P(A)| there is a finite sequence Z1, ..., Zn ∈ B such that Z1 ∩ ... ∩ Zn ⊆ X}

In other words: F(B) is obtained by forming all intersections of finite subfamilies of B and then
closing upwards.

Easy to verify: F(B) is a filter. This filter is called the filter generated by B. Exercise: F(B) is
the smallest filter F such that B ⊆ F , i.e.

F(B) =
⋂
{F ∈ P(P(A))|F is a filter and B ⊆ F}.

(∗) Let F be a filter on A and X ⊆ A. Then either F ∪ {X} or F ∪ {A−X} is a filter base.
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Proof. It is enough to show that one of the following (1) is true:
Either Z ∩X 6= ∅ for all Z ∈ F
Or else Z ∩ (A−X) 6= ∅ for all Z ∈ F .

Why: If Z ∩X is nonempty for all Z ∈ F then F ∪ {X} is a filter base. If Z1, ..., Zn ∈ F ∪ {Z}
then either Zi ∈ F for all i < n + 1 and then obviously Z1 ∩ ... ∩ Zn 6= ∅, or else Zi = Z for some
i < n+ 1 and then Z1 ∩ ... ∩ Zn = Z ∩ (

⋂
j 6=i Zj) 6= ∅ where F =

⋂
j 6=i Zj.

Similarly for A−X.

Now prove (∗) : assume there is some X ∈ P(A) such that (1) fails. Then we can find Z1, Z2 ∈ F
such that

Z1 ∩X = ∅ and Z2 ∩ (A−X) = ∅

Let Z = Z1 ∩ Z2 ∈ F . Then still Z ∩X = ∅ and Z ∩ (A−X) = ∅. Then:

∅ = (Z ∩X) ∪ (Z ∩ (A−X)) = Z ∩ (X ∪ (A−X)) = Z ∩ A = Z. Contradiction.

Prime Ideal Theorem (PID): If A is a set and F is a filter on A, then there is an ultrafilter U
on A such that F ⊆ U .

We show: AC⇒ PID

Proof. We use Zorn’s Lemma. We let

P = the set of all filters on A. The ordering: ⊆.

This poset (P,⊆) easily satisfies Zorn’s condition: If B is a chain of filters on A then
⋃
B is a filter

on A. (Exercise).
So there is a maximal filter U in (P,⊆). We show that U is an ultrafilter. That is, if X ∈ P(A)

then X ∈ U or (A−X) ∈ U . But if there is some X with both X /∈ U and (A−X) /∈ U then by
(∗)

U ∪ {X} or U ∪ {A−X}

is a filter base so

F(U ∪ {X}) or F(U ∪ {A−X})

is a filter properly extending U , which contradicts the maximality.
That ends the proof

Remark PID ; AC.

Corollary: A filter U on A is maximal in (P,⊆) iff U is an ultrafilter on A.

Conclusion (AC): If A is an infinite set then there exists a nonprincipal ultrafilter on A. Why:
Let F be the Frechér filter on A, i.e. F = {X ∈ P(A)|A−X is finite}. Then A− {a} ∈ F for all
a ∈ A. Let U ⊇ F be an ultrafilter on A.
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Then A− {a} ∈ U for all a ∈ A, so U is non-principal.

5. Cardinals (ZF)

5.1 Definition: Equinumerous
Two sets A,B are equinumerous iff there is a bijection f : A→ B. We write A ∼ B.

5.2 Proposition:
∼ is an equivalence relation. Moreover, ∼ is a class and for each set a ∈ V the equivalence class

[a]∼ is a proper class. (a ∼ a× {x}∀x ∈ V ).
Our goal: Find a representative for each equivalence class.
Notice: we could do this locally, using AC. If we have some big set S we can use AC to pick

representatives on S/ ∼. However, we would like to do everything globally.

5.3 Definition: Cardinal Assignment
A cardinal assignment is a class function c : V → V such that

c(x) = c(y) iff x ∼ y

for all x, y ∈ V .
In other words, a cardinal assignment is a class selector on V/ ∼.

5.4 Proposition (ZF):
There is such a cardinal assignment.

Proof. First define a function x 7→ αx ∈ On by

αx = the least ordinal α such that [x]∼ ∩ Vα 6= ∅

It is easy to check that x 7→ αx is a class function defined on the entire V . Then let

c(x) = [x]∼ ∩ Vαx
Again easy to check: c : V → V is a class function and c(x) 6= ∅ for all x ∈ V . Notice

c(x) ⊆ [x]∼ so every element of c(x) is equinumerous to x. This tells us: c(x) = c(y)⇒ x ∼ y since
every z ∈ c(x) = c(y) is equinumerous to both x and y.

On the other hand, if x ∼ y then [x]∼ = [y]∼ ⇒ αx = αy, hence

c(x) = Vαx ∩ [x]∼ = Vαy ∩ [y]∼ = c(y).

5.5 Remark:
P.5.4 Uses the Axiom of Foundation, as it assumes that V =

⋃
α∈On Vα. The method in P.5.4 is

important, as it gives a recipe how to replace proper classes by sets in a uniform way (i.e. we can
express this process of replacement in the language of set theory).
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The drawback: Typically, c(x) is much larger than x in the sense that there will be no surjection
g : x→ c(x) in most cases.

However, one can show that without AC we cannot do better.
Our goal is to find a cardinal assignment c : V → V such that c(x) ∼ x. This assignment will

be much more useful. However, we will use AC here.

5.6 Definition:
Given sets A,B, we write
(i) A ≤ B iff there is an injection f : A→ B
(ii) A ≤s B iff there is a surjection g : B → A

Notice: (ZF) A ≤ B ⇒ A ≤s B
(ZFC) A ≤s B ⇒ A ≤ B
So these are equivalent under (ZFC).

5.7 Theorem (ZF): (Schröder-Bernstein) (A ≤ B and B ≤ A) ⇒ A ∼ B

Proof. f : A→ B, g : B → A are injections.
Let A1 = g[B]. Then A1 ∼ B.
Let A2 = g ◦ f [A] then A2 ∼ A and A2 ⊆ A1 ⊆ A. It suffices to show: A1 ∼ A.
We prove: assume A′ ⊆ A and h : A → A′ is an injection. Then A ∼ A′. Comparing with the

above: A′ plays the role of A1 and h plays the role of g ◦ f . Also:

A′′ = h[A]
A′′′ = h[A′]

...

Idea: use h to map A − A′ onto A
′′ − A′′′ , A′′ − A′′′ onto A

′′′′ − A′′′′′ etc. And don’t move the
remaining elements if there are any.

An economic way of writing the things:
For n ∈ ω let hn(x) = h ◦ h ◦ ... ◦ h(x) n times, h0(x) = x. Let

X = the set of all x ∈ A such that (∃x̄ ∈ A− A′)(∃n)(x = hn(x̄)

Now define H : A→ A′ by

H(a) =

{
h(a) if a ∈ X

a if a /∈ X
Then H : A→ A′ is a bijection. First notice that the values of H(a) are indeed elements of A′.

This is because either H(a) = h(a) in which case h is already mapping into A′. Or else, H(a) = a
but this is only if a ∈ A−X and A−X ⊆ A− (A− A′) = A′ since X ⊇ A′.

H is injective: Assume H(a) = H(b)

Proof. Case 1: a, b ∈ X. This means: we have ā, b̄ ∈ A−A′ and m,n ∈ ω such that a = hm(ā) and
b = hn(b̄). We know that H(a) = h(a) and H(b) = h(b), so

hm+1(ā) = hn+1(b̄)
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What if m 6= n. Assume WLOG that m < n. Using the injectivity of h, we can cancel m + 1
times and we get that

A− A′ 3 ā = hn−m(b̄) ∈ A′

Because n−m > 0. Contradiction. So m = n and therefore a = hm(ā) = hm(b̄) = b by injectivity
of h.

Case 2: WLOG a ∈ X and b /∈ X. In this case, we cannot have H(a) = H(b) because by
definition of H,

a ∈ X ⇒ H(a) = h(a) ∈ X
a ∈ A−X ⇒ H(a) = a ∈ X.

Case 3: a, b ∈ A−X. But in this case, b = H(b) = H(a) = a.

H is surjective:

Proof. Let a ∈ A′. Then either a ∈ X in which case a = hn(ā) for some ā ∈ A−A′ and n ∈ ω. But
n > 0 otherwise A 3 a = ā ∈ A− A′. So n = n̄+ 1 for some n̄ ∈ ω and

a = hn̄+1(ā) = h(hn̄(ā)) = H(hn̄(ā)) (hn̄(ā) ∈ X)

or else: a ∈ A−X in which case a ∈ A′ and H(a) = a. In either case, a ∈ rng(H).
That ends the proof of surjectivity.

That ends the proof.

5.8 Corollary:
The relation ≤ is a partial ordering modulo ∼. That is:
A ≤ A for all A
(A ≤ B ∧B ≤ A)⇒ A ∼ B (Schröder-Bernstein)
(A ≤ B ∧B ≤ C)⇒ A ≤ C

In particular: if c is the cardinal assignment from P.5.4: the second clause above can be replaced
by

(A ≤ B ∧B ≤ C)⇒ c(A) = c(B)

So ≤ induces a partial ordering on rng(c).
We let c(A) � c(B) iff A ≤ B. Then � is a partial ordering.

Notice: if α < β are ordinals such that α ∼ β and α < γ < β then α ∼ γ ∼ β. Why:
idγ : γ → β is an injection
f : β → γ is an injection when f : β → α is a bijection.
So by Schröder-Bernstein: γ ∼ β.

This means: if α ∈ On then Iα = {ξ ∈ On|ξ ∼ α} is an interval. Iα is open from above whenever
α is infinite (α ≥ ω), i.e. Iα does not have a largest element: if ξ ∈ Iα then also ξ + 1 ∈ Iα because
if f : α→ ξ is a bijection then f ′ : α→ ξ + 1 is a bijection when
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f ′(0) = ξ
f ′(n+ 1) = f(n) for n < ω
f ′(n) = f(n) for n ≥ ω.

Also: each Iα has a least element, because Iα ⊆ On. So Iα looks as follows: [κα, λα) when
possibly λα =∞.

Important point: The least element κα of Iα is not equinumerous to any β < κα.

5.9 Definition: Cardinals
An ordinal α is a cardinal iff α is not equinumerous to any β < α.

5.10 Definition:
We say that a set A has a cardinality iff A is equinumerous to some cardinal. In this case we

denote the cardinality of A by card(A) or |A|. Some literature also uses ¯̄A.

5.11 Proposition:
AC implies that every set has a cardinality. So under AC, we have a cardinality assignment

A 7→card(A) such that A ∼card(A) for all sets A.

Proof. Let A be a set. By AC, we can find a well-ordering < on A. We proved that every well-
ordering is isomorphic to an ordinal, so we can find α ∈ On such that (A,≤) is isomorphic to (α,∈)
via some isomorphism f . Let κ ∈ Iα be a cardinal. Then we have a bijection g : α → κ. Then
g ◦ f : A→ κ so A ∼ κ.

5.12 Remark:
Notice that under AC: all cardinalities are linearly ordered. As a consequence if A,B are sets

then A ≤ B or B ≤ A. This is not true without AC. Given a partial ordering (I,≤I) one can
construct a model of ZF that contains (I,≤I) and a system of sets (Ai|i ∈ I) such that for each
i, j ∈ I:

i ≤I j iff Ai ≤ Aj

(one can also prove the converse of this).

5.13 Proposition:
(a) Every n ∈ ω is a cardinal.
(b) ω is a cardinal.

Proof. (a) By induction on n show that there is no injection of n into m < n. (Exercise).
(b) Follows from (a): If f : ω → n is an injection, then f : n+ 1→ n is an injection

5.14 Theorem: Existence of Cardinals
Let Cn = {κ ∈ On|κ is a cardinal}. Then Cn is a proper class.
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Proof. Easy: Cn is a class.
We show that Cn is proper. Suppose not. This means that Cn ⊆ α for some α ∈ On. This

means that Iα is of the form [κ,∞), i.e. every ordinal β > α is an element of Iα. In other words:
Iα is a proper class. From this we derive a contradiction. Define a map

F : P(α× α)→ Iα

by

F (a) =

{
otp(a) if a is a well-ordering on α

α otherwise

Then F is a surjection. Why: if γ ∈ Iα then we have a bijection g : α→ γ. Define a set a ⊆ α× α
by 〈ξ, ξ′〉 ∈ a⇔ g(ξ) < g(ξ′).

A routine verification yields that (α, a) is a well-ordering isomorphic to (γ,∈) via g. (exercise).
This means that otp(a) = γ, so F (a) = γ. Hence, γ ∈ rng(F ). This shows rng(F ) = Iα. Now

P(α× α) is a set by the Power Set axiom. Also, α is a class function. So by Replacement, rng(F )
must be a set. But rng(F ) = Iα. Contradiction.

5.15 Remark:
This proof substantially depends on the use of Power set and Replacement axioms. One can

show that if we drop even one of them, we are unable to prove that there are cardinals other than
those in ω ∪ {ω}.

5.16 Definition:
A set A is
(i) finite iff A ∼ n for some n ∈ ω.
(ii) countable iff A ∼ ω.
(iii) uncountable otherwise.

5.17 Proposition:
Cn is a closed class.

Proof. Assume A ⊆ Cn and κ ∈ On is a limit point of A. This means that κ =
⋃

(A∩κ). Then κ is
a cardinal: if not, there would be some α < κ and some bijection f : κ→ α. Since κ is a limit point
of A, we can pick λ ∈ A such that α < λ < κ. Then f � λ : λ→ α is an injection and α < λ , λ a
cardinal, this is a contradiction. (A cardinal may not be equinumerous to any other cardinal).

5.18 Definition:
Since Cn−ω, the class of all infinite cardinals is a proper class, we can use recursion on ordinals

to define an enumeration of Cn − ω. This enumeration is denoted by ℵ (Hebrew “Aleph”). So

ℵ : On → Cn − ω

and is defined by recursion, i.e. ℵ(α) = min(Cn − ω − ℵ[α]). In human language: ℵ(α) is the αth

infinite cardinal. We write ℵα instead of ℵ(α). Also, we often write ωα instead of ℵα if we want to
stress our interest in the well-ordering of ℵα.

By P.5.17 and P+D.3.33 and HW6: ℵ is a normal function.
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5.19 Definition: Operations on Cardinals
We define:
(a) Cardinal Addition:

κ+ λ = |({0} × κ) ∪ ({1} × λ)|

(b) Cardinal Multiplication:

κ · λ = |κ× λ|.

Remark: the same notation was is used to ordinal operations, it will be always clear from the
context was is meant.

5.20 Proposition:
Let κ be an infinite cardinal. Then κ · κ = κ.

Proof. By induction on κ.
— If κ = ω: Look at the otp(ω × ω,<mlex). Notice: if (m,n) ∈ ω × ω then the initial segment

below (m,n) under <mlex is contained in the set max(m+1, n+1)×max(m+1, n+1). That is, the
initial segment is finite. That is, true of any such initial segment. So: (ω × ω,<mlex) is an infinite
well-ordering all of whose proper initial segments are finite. So otp(ω × ω,<mlex) = ω.

Hence |ω × ω| = ω.

—If κ > ω look at (κ× κ,<mlex).
Similarly as above: If (α, β) ∈ κ×κ, the initial segment below (α, β) is contained in γ×γ where

γ = max{α, β}+ 1.
Now γ < κ. Hence if λ = |γ| then λ < κ. If γ is infinite then so is λ and γ × γ ∼ λ × λ ∼ λ

where the last ∼ is from the induction hypothesis.
(Picture)
Conclusion: (κ × κ,<mlex) is a well-ordering all of whose initial segments are of cardinality

smaller than κ.
But if α ∈ On and α > κ then κ is a proper initial segment of α. And |κ| = κ. It follows that

otp(κ × κ,<mlex) ≤ κ. On the other hand: the map ξ 7→ 〈o, ξ〉 is an order-reserving map from
(κ,<) to (κ× κ,<mlex) ≥ κ. Conclusion: otp(κ× κ,<mlex) = κ. So |κ× κ| = κ

5.21 Proposition:
Let κ, λ ∈ Cn.
(a) If both κ, λ ∈ ω then κ + λ (the ordinal)= κ + λ (the cardinal). And similarly with

multiplication.
(b) If at least one of κ, λ is infinite, then κ+λ = κ ·λ = max{κ, λ}. (Holds if both κ, λ nonzero).

Proof. (a) Exercise.
(b) Let µ = max{κ, λ}. Note: µ is infinite.

µ→1 ({0} × κ) ∪ ({1} × λ)→2 κ× λ→3 µ× µ→4 µ

1. Obvious injection.
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2. If min{κ, λ} ≥ 2. Identity if κ ≤ λ.
3. Obvious injection by identity.
4. Injection by P.5.20.
And if min{κ, λ} ∈ {0, 1} then we can just do these cases separately.

Exponentiation:
If A, B are sets, then AB denotes the set of all functions from A to B. That is,

AB = {f ∈ P(A×B)|f : A→ B}

5.22 Proposition:
For every set A we have that P(A) ∼A {0, 1}.

Proof. The function F : P(A)→A {0, 1} defined by

F (x) = χx = the characteristic function of x.

Is the desired bijection. Here,

χx : A→ {0, 1} defined by

χx =

{
1 if a ∈ x
0 if a /∈ x

5.23 Theorem: Cantor
There is no surjection of a set A onto P(A).

Proof. Assume f : A→ P(A) is a surjection. Define B ⊆ A by

b ∈ B ⇐⇒ b /∈ f(b), i.e. B = {a ∈ A|a /∈ f(a)}

Claim: B /∈ rng(f). Otherwise, we would have some b such that B = f(b). But then

b /∈ f(b)⇔ b ∈ B ⇔ b ∈ f(b).

Contradiction.

5.24 Corollary:
(a) A � P(A)
(b) If B has at least two elements, then A � (A{0, 1}) ≤ (AB).

Proof: Schröder-Bernstein

5.25 Proposition:
Let A,B,C be sets. Then
(a)({0}×B)∪({1}×C)A ∼ (BA)× (CA).
(b)(B×C)A ∼ (C(BA)).
(c) C(A×B) ∼ (CA)× (CB).
Proof: Exercise.
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From now on we work with AC. Under this assumption, P(A) and the set AB are equinu-
merous to some cardinals.

5.26 Definition (AC):
Let κ, λ be cardinals. We define

κλ =card(λκ).

5.27 Problem:
We know that |R| = 2ℵ0 .
What is the α such that 2ℵ0 = ℵα? (What is the α such that ℵα = |R|?).
The statement: “There is no set X ⊆ R such that ℵ0 < |X| < |R| ” is called the Continuum

Hypothesis, or (CH) . The above makes sense without AC. In the presence of AC:

CH⇔ 2ℵ0 = ℵ1

Recall: If ZF / ZFC is consistent, the proof of consistency cannot be formalized in ZF. This requires
some care in formulating the results. Recall: the statement “T is consistent” is abbreviated by
“Con(T)”.

1938 Gödel: Con(ZF)⇒ Con(ZF+AC+CH)

So ZFC cannot deny CH.
1963 Cohen: Con(ZF) ⇒ Con(ZF+AC+¬CH)

So ZFC cannot deny ¬CH.

The statement: “For every infinite set A there is no X ⊆ P(A) such that |A| < |X| < |P(A)|.”
Is called the Generalized Continuum Hypothesis, (GCH). This makes sense without AC.

In the presence of AC:

GCH ⇐⇒ (∀α)(2ℵα = ℵα+1)

Sierpiński: GCH ⇒ AC

Gödel 1938: Con(ZF) ⇒ Con(ZF+AC+GCH)

Solavay (sp?) 1967 (?): Let α ∈ On. Then

Con(ZF) ⇒ Con(ZF+AC+2ℵ0 > ℵα)
Con(ZF) ⇒ Con(ZF+AC+2ℵ0 > ℵα+1)

König early 1900s : 2ℵ0 6= ℵω.
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