HOMEWORK 1

Due: Monday April 26, 2010

Important note: You can quote any result proved in the lecture. I recommend to do so, so that you can focus on each Problem itself.

1. Let \mathcal{L} be the language of set theory $\{\in\}$. We will write \in instead of \in^* which involves an abuse of notation as \in is the membership relation itself.

 (a) A **bounded** existential quantification is a quantification of the form
 $$(\exists z)(z \in x \land \varphi).$$
 We abbreviate the above formula by $(\exists z \in x)\varphi$ and call the expression
 “$(\exists z \in x)$” a **bounded existential quantifier**.

 (b) A **bounded** universal quantification is a quantification of the form
 $$(\forall z)(z \in x \rightarrow \varphi).$$
 We abbreviate the above formula by $(\forall z \in x)\varphi$ and call the expression
 “$(\forall z \in x)$” a **bounded universal quantifier**.

 (c) The usual quantifiers $(\exists z)$ and $(\forall z)$ are then called **unbounded**.

 (d) A formula in the language of set theory is **bounded** if and only if it does not contain any unbounded quantifiers. Alternatively, the notion of a bounded formula can be defined inductively: (i) all atomic formulae are bounded, (ii) if φ and ψ are bounded then so is $\varphi \land \psi$, (iii) if φ is bounded then so is $\neg \varphi$, and (iv) if φ is bounded then so are $(\exists z \in x)\varphi$ and $(\forall z \in x)\varphi$.

 Let M be a transitive set. Then $M = \langle M, \in \cap (M \times M) \rangle$ is an \mathcal{L}-structure. Here $\in \cap M \times M = \{\langle a, b \rangle \in M \mid a \in b\}$. Prove the following:

 If $\varphi(x_1, \ldots, x_\ell)$ is a bounded formula with all free variables among x_1, \ldots, x_ℓ and $a_1, \ldots, a_\ell \in M$ then $M \models \varphi[a_1, \ldots, a_\ell]$ if and only if $\varphi[a_1, \ldots, a_\ell]$ holds in V.

 Notice that the problem is not entirely correctly formulated. Try to suggest a correct formulation, but do not run the proof using this correct formulation, as it would add some notational complexity.

 Hint. Do the induction on complexity of formulae.

2. Let \mathcal{L} be any language. Working in ZF, this exercise leads to a proof of an analogue of the theorem on Henkin models which avoids the notion of provability. This requires suitable substitutes for the notions of consistency, completeness and Henkin constant. Let Σ be a set of \mathcal{L}-sentences.
For the purpose of this exercise, let us say that:

- Σ has Henkin constants in the semantical sense just in case that for every \mathcal{L}-formula φ with the only free variable x such that $\Sigma \models (\exists x)\varphi$ there is a constant symbol c of the language \mathcal{L} such that $\Sigma \models \varphi(x/c)$.

- Σ is complete in the semantical sense if and only if for every \mathcal{L}-sentence σ it is the case that $\Sigma \models \sigma$ or $\Sigma \models \lnot \sigma$.

Assume that Σ is a set of \mathcal{L}-sentences such that

(a) Every finite $\Delta \subseteq \Sigma$ has a model;

(b) Σ is complete in the semantical sense;

(c) Σ has Henkin constants in the semantical sense.

Prove that Σ has a model \mathcal{M} such that there is a surjection of $C^\mathcal{L}$ onto the domain of \mathcal{M}; here $C^\mathcal{L}$ is the set of all constant symbols of \mathcal{L}.

Hint. Imitate the proof of Theorem 3.11 from the lecture.