HOMEWORK 1

1. Work in ZF. Let κ be an infinite cardinal. Prove that the following two facts are equivalent.

 (a) $\mathcal{P}(\alpha)$ can be well-ordered for every ordinal α.

 (b) Axiom of Choice, or equivalently, every set can be well-ordered.

 Hint. By induction on α prove that each V_α can be well-ordered. (Why is this sufficient?) The successor step of the induction is easy. To see that V_α is well-orderable for limit α use the fact that each $x \in V_\alpha$ can be encoded into a subset of $\beta \times \beta$ for some ordinal β via an obvious bijection. This coding makes use of the Mostowski collapsing theorem. The argument is similar to the argument for HW3, Problem 3(f) from winter assignment.

2. Let \mathcal{L} be a first-order language and Γ be a set of \mathcal{L}-sentences. Define the following binary relation on the set of all \mathcal{L}-sentences:

 $$\varphi \sim \psi \iff \Gamma \vdash \varphi \leftrightarrow \psi.$$

 Show that \sim is an equivalence relation on the set of all \mathcal{L}-sentences. Let B be the corresponding quotient set.

 (a) Assume that Γ is consistent. On B define operations \land, \lor, 0, 1 and $'$ as follows: $[\varphi \land [\psi] = [\varphi \land \psi]$, $[\varphi \lor [\psi] = [\varphi \lor \psi]$, $0 = [\varphi \land \neg \varphi]$, $1 = [\varphi \lor \neg \varphi]$ and $[\varphi'] = [\neg \varphi]$. Show that the structure B_Γ with support B and the above operations is a Boolean algebra. This algebra is called the **Lindenbaum algebra** of Γ. Find the definition of the corresponding partial ordering in terms of provability from Γ.

 (b) For any \mathcal{L}-sentence σ prove that $\Gamma \vdash \sigma$ iff $[\sigma] = 1$, and Γ is consistent with σ iff $[\sigma] \neq 0$.

 (c) More generally, let Σ be a set of \mathcal{L}-sentences. Show that

 $$S_\Sigma = \{[\sigma] \mid \sigma \in \Sigma\}$$

 induces a filter F_Σ on B_Γ in a natural manner if and only if $\Gamma \cup \Sigma$ is consistent. Find out how is this filter induced and write down a formal definition of F_Σ from S_Σ.

1
(d) Let Σ be a set of \mathcal{L}-sentences such that $\Gamma \cup \Sigma$ is consistent. Show that the Lindenbaum algebra $B_{\Gamma \cup \Sigma}$ is isomorphic to the quotient B_{Γ} / F_{Σ}.

(e) Let \mathcal{B} be the Lindenbaum algebra for the axioms of predicate logic in \mathcal{L}, that is, $\mathcal{B} = B_{\Gamma}$ where Γ is just the set of all axioms of predicate logic. Let Σ be a consistent set of \mathcal{L}-sentences. Show that Σ is complete iff F_{Σ} is an ultrafilter on \mathcal{B}.

(f) Determine the Lindenbaum algebra of a complete set of sentences.