HOMEWORK 5

1. Let \mathcal{L} be a finite language. Prove that for any two finite \mathcal{L}-structures $\mathfrak{A}, \mathfrak{B}$ the following is true:

$$\mathfrak{A} \equiv \mathfrak{B} \iff \mathfrak{A}, \mathfrak{B} \text{ are isomorphic.}$$

Recall that $\mathfrak{A} \equiv \mathfrak{B}$ means that $\mathfrak{A}, \mathfrak{B}$ are elementarily equivalent.

2. Recall that if Σ is a consistent set of \mathcal{L}-sentences we say that $\bar{\Sigma}$ is an axiomatization of Σ just in case that for all \mathcal{L}-sentences σ we have

$$\Sigma \models \sigma \iff \bar{\Sigma} \models \sigma.$$

A consistent set Σ of \mathcal{L}-sentences is finitely axiomatizable iff there is some finite axiomatization of Σ.

Assume Σ is a consistent finitely axiomatizable set of \mathcal{L}-sentences and that Σ does not have any finitely axiomatizable complete extension. Show that there are 2^{\aleph_0} complete extensions of Σ.

Hint. Notice that Σ is not complete, so there is an \mathcal{L}-sentence σ_0 such that $\Sigma \cup \{\sigma\}$ and $\Sigma \cup \{\neg \sigma\}$ are both consistent. Iterate this to obtain \mathcal{L}-sentences σ_n for all $n \in \omega$. These sentences give rise to a tree of height ω in the natural way. Look at the infinite branches of this tree. Use the compactness theorem. Formulate everything rigorously.

3. Let \mathcal{L} be a countable language and Σ be a complete set of \mathcal{L}-sentences. Show that there is a model $\mathfrak{A} \models \Sigma$ of cardinality $\leq 2^{\aleph_0}$ with the following property.

If $\mathfrak{B} \models \Sigma$ and $B' \subseteq B$ is countable then there is some $A' \subseteq A$ such that \mathfrak{B}_{B} is elementarily equivalent to \mathfrak{A}_{A}.

Hint. Show that there are at most 2^{\aleph_0} countable models of Σ modulo isomorphism. Then for each such model \mathfrak{C} and each $C' \subseteq C$ consider the diagram $Th(\mathfrak{C}_{C'})$. Let Γ be the union of all such diagrams. Show that Γ is consistent, here use an argument similar to that in the proof of Claim 3 in the proof Joint Consistency Theorem from the lecture. Then show that if $\mathfrak{A} \models \Gamma$ then \mathfrak{A} is as required. To translate from uncountable structures to countable structures use the downward Löwenheim-Skolem theorem.
4. The language L for the theory of linear orderings has only one binary predicate symbol \prec.

 (a) Write down a finite list Σ of L-sentences that expresses the property of being a dense linear ordering without endpoints. That is, for every L-structure \mathfrak{A} we have:

 $$\mathfrak{A} \models \Sigma \quad \text{iff} \quad \mathfrak{A} \text{ is a dense linear ordering without endpoints.}$$

 Here “dense” means that between any two distinct elements there is a third one. An endpoint is either the largest element or the smallest element.

 (b) Show that Σ is complete.

 Hint. Regarding (b), show that if $\mathfrak{A} \models \Sigma$ then $\mathfrak{A} \cong (\mathbb{Q}, \lt)$ where \mathbb{Q} is the set of all rational numbers and \lt is the usual ordering on rational numbers. To do this, use the downward Löwenheim-Skolem Theorem to show that \mathfrak{A} has a countable elementary substructure \mathfrak{A}' and then show that \mathfrak{A}' is isomorphic to (\mathbb{Q}, \lt). The isomorphism is constructed inductively in a back-and-forth manner, this is a construction due to Cantor that you should know from analysis.

5. Let L be a language with one binary function symbol $+$ and one constant symbol 0. Any Abelian group can be viewed as an L-structure where $+$ is interpreted as addition and 0 as the identity element of the group.

 Let \mathbb{Z} be the Abelian group of all integers. Show that \mathbb{Z} is not elementarily equivalent with $\mathbb{Z} \oplus \mathbb{Z}$.