HOMEWORK 7

1. Assume AC. Let \mathcal{L} be a countable language and \mathfrak{A} be an uncountable \mathcal{L}-structure. Show that there is a club \mathcal{C} in $\mathcal{P}(\mathfrak{A})$ in the sense of Woodin’s definition such that every $\bar{A} \in \mathcal{C}$ induces an elementary substructure of \mathfrak{A}.

 Hint. Consider Skolem functions for \mathfrak{A}.

 For all problems concerning ultrapowers assume that the structures in question have Skolem functions.

2. Recall that an ultrafilter U on a set I is principal iff there is some $i^* \in I$ such that the set $\{ x \subseteq I \mid i^* \in x \}$ is in U.

 Let \mathcal{L} be a language and $\langle \mathfrak{A}_i \mid i \in I \rangle$ be an indexed system of \mathcal{L}-structures. Assume that U is a principal ultrafilter on I. Prove that the ultraproduct $\text{Ult}(\langle \mathfrak{A}_i \mid i \in I \rangle, U)$ is isomorphic to one of the structures \mathfrak{A}_i. Which one is it?

 Conclusion: In order that the ultrapower construction gives something new we need that the corresponding ultrafilter is non-principal.

3. Any ultrafilter is **finitely complete**, that is, if $X \subseteq U$ is finite then $\bigcap X \in U$. An ultrafilter U on a set I is **countably complete** if and only if for every countable $X \subseteq U$ we have $\bigcap X \in U$.

 Assume \mathcal{L} is a language that contains (among other possible symbols) a binary predicate symbol \dot{E}. Let \mathfrak{A} be an \mathcal{L}-structure such that $\dot{E}^\mathfrak{A}$ is a well-founded relation. Let U be an ultrafilter on I and $\mathfrak{A}' = \text{Ult}(\mathfrak{A}, U)$. Prove:

 \[\dot{E}^\mathfrak{A}' \text{ is well-founded } \iff \text{U is countably complete.} \]

 Hint. Using the Łoś Theorem reduce the question of well-foundedness of $\dot{E}^\mathfrak{A}'$ to that of well-foundedness of $\dot{E}^\mathfrak{A}$. Start with the implication \iff which is simpler and which will give you a hint how to approach the converse.

4. Assume AC. Prove the compactness theorem using ultrapowers.

 Hint. Assume Σ is a set of \mathcal{L}-sentences such that every finite $\Delta \subseteq \Sigma$ has a model. Your index set I will be the set of all such Δ‘s, i.e. $I = [\Sigma]<\omega$. To each $\Delta \in I$ pick an \mathcal{L}-structure \mathfrak{A}_Δ such that $\mathfrak{A}_\Delta = \Delta$. This can be done by the assumptions. Now for each $\Delta \in I$ let $X_\Delta = \{ \Delta' \in I \mid \Delta \subseteq \Delta' \}$. Show that there is an ultrafilter U on I such that $X_\Delta
subseteq U$ for each $\Delta \in I$. Then show that $\text{Ult}(\langle \mathfrak{A}_\Delta \mid \Delta \in I \rangle, U) = \Sigma$.

1
5. Let \mathcal{N} be the standard model of arithmetic; here we understand that the corresponding language \mathcal{L} contains the usual symbols $0, S, +, \cdot$ and \prec. Let U be a nonprincipal ultrafilter on ω and let $\mathcal{N}' = \text{Ult}(\mathcal{N}, U)$.

Prove that real numbers can be embedded into \mathcal{N}' in the following sense: There is a map $f : \mathbb{R} \to \mathcal{N}'$ such that for every $a, b \in \mathbb{R}$ we have

$$a < b \implies f(a) <_{\mathcal{N}'} f(b).$$

Here $<$ is the usual ordering on real numbers.

This says that the ultrapower \mathcal{N}' has large cardinality and its ordering $<_{\mathcal{N}'}$ is complicated.