MATH 281A FALL 2016 HOMEWORK 2

Due date: Monday, November 14

Rules: Write as efficiently as possible: Include all relevant points and think carefully what to write and what not. Use common sense to determine what is the appropriate amount of details for a course at this level. Quote any result from the lecture you are referring to; do <u>not</u> reprove the result. Each problem indicates maximum allowed length; this is usually much more than needed. If you type, do not use font smaller than 10pt.

I will not grade any text that exceeds the specified length.

- 1. Work in ZF. A Borel code is a pair c = (T, u) where
 - (a) T is a countable well-founded tree with a single root $r = r_c$; we denote the corresponding tree ordering by $<_T$.
 - (b) $u: \min(T) \to {}^{<\omega}\omega$ where $\min(T)$ is the set of all minimal elements of T.

Notice that if c = (T, u) is a Borel code and $t \in T$ then $c_t = (T^t, u \upharpoonright \min(T^t))$ is also a Borel code; here $T^t = \{t' \in T \mid t \leq_T t'\}$. Notice also that $r(c_t) = t$.

Given a Borel code c = (T, u), we define an evaluation B(c) of c recursively as follows.

- (i) If T consists of only a root, i.e. $T = \{r_c\}$ then $B(c) = B_{u(r_c)}$ where recall that for every $s \in {}^{<\omega}\omega$, the set B_s is the basic open neighborhood in $\mathcal N$ determined by the sequence s.
- (ii) If r_c has exactly one immediate successor in T, call it t, then

$$B(c) = \mathcal{N} \setminus B(c_t).$$

(iii) If r_c has more than one immediate successors in T then

$$B(c) = \bigcup \{B(c_t) \mid t \text{ is and immediate successor of } r_c \text{ in } T\}.$$

- A. Prove the following. For (A3) you may use the Axiom of Choice.
- (A1) (1/3 page) Every Borel code has an evaluation.
- (A2) (1/3 page) For every Borel code c, the evaluation B(c) is a Borel subset of \mathcal{N} .
- (A3) (1/2 page) If $B \subseteq \mathcal{N}$ is a Borel set then there is a Borel code c such that B = B(c).

Now make the things more uniform. Given a Borel code c = (T, u), we can code c via some $\tilde{c} \in \mathcal{N}$ as follows.

- $(\tilde{c})_0$ codes a tree ordering $<_{\tilde{c}}$ on ω isomorphic to T.
- $(\tilde{c})_1$ codes the function u; this time as a function from the set of minimal nodes with respect to the ordering $<_{\tilde{c}}$ into SEQ such that $(\tilde{c})_1(k)$ is the code of the sequence u(t) where t is the minimal node in T corresponding to k under the above isomorphism.

From now on, when we talk about Borel Codes we mean elements of \mathcal{N} coding Borel codes in the previous sense.

- B. Prove the following
 - (B1) (1/2 page) (A3) can be proved using merely $AC_{\omega}(\mathbb{R})$.
 - (B2) (1 page) The set BC of all Borel Codes is a Π_1^1 -subset of \mathcal{N} .
- **2.** We proved in the lecture that there is a universal Σ_1^0 -set $G \subseteq \omega \times \omega \times \mathcal{N}$ (lightface!) in the sense that if $A \subseteq \omega \times \mathcal{N}$ is Σ_1^0 then there is some $e \in \omega$ such that

$$A(n,x) \iff G(e,n,x)$$

whenever $n \in \omega$ and $x \in \mathcal{N}$.

- (a) (1/3 page) Use this fact to construct a universal Σ_1^1 set $H \subseteq \omega \times \omega$ for all Σ_1^1 -subsets of ω .
- (b) (1/3 page) Use (a) to construct a Π_1^1 -subset of ω which is not Σ_1^1 .
- (c) (1/3 page) We proved in the lecture that there is a Π_1^1 -subset of \mathcal{N} which is not Σ_1^1 . Is there a Π_1^1 -subset of ω which is not Σ_1^1 ?
- **3.** (2/3 page) If $a \in WO$ we let otp(a) be the order-type of the well-ordering coded by a. Define

$$\delta_1^1 = \sup \{ \mathsf{otp}(a) \mid a \in \mathsf{WO} \ \land \ a \text{ is a } \Delta_1^1\text{-subset of } \omega \}.$$

Prove that $\delta_1^1 = \omega_1^{CK}$.

Hint. For the non-trivial part, use Exercise 2.

4. (2/3 page) Let $A \subseteq WO$ be a Σ_1^1 -set. Prove that there is a countable ordinal α such that $\operatorname{otp}(a) < \alpha$ for all $a \in A$.

Hint. Use Exercise 2.