MATH 281B WINTER 2017 HOMEWORK 2

Due date: Wednesday February 22

Rules: Write as efficiently as possible: Include all relevant points and think carefully what to write and what not. Use common sense to determine what is the appropriate amount of details for a course at this level. Quote any result from the lecture you are referring to; do <u>not</u> reprove the result. Each problem indicates maximum allowed length; this is usually much more than needed. If you type, do not use font smaller than 10pt.

I will not grade any text that exceeds the specified length.

PD stands for the Axiom of Projective Determinacy which states that every projective set is determined.

- 1. (1/2 page) Assume $\operatorname{Det}(\Delta_{2n}^1)$. Prove that each of the pointclases Π_{2n+1}^1 , Σ_{2n+2}^1 , Π_{2n+1}^1 and Σ_{2n+2}^1 has the uniformization property.
- **2.** (1/3 page) Assume $\mathsf{Det}(\Delta^1_{2n})$. Prove that every nonempty $\Sigma^1_{2n+2}(x)$ -set contains a $\Delta^1_{2n+2}(x)$ -point. Here we say that, given a pointclass Γ , a point $y \in \mathcal{N}$ is a Γ -point iff $\{s \in \mathsf{SEQ} \mid y \in B_s\} \in \Gamma$.
- 3. (2/3 page) In the lecture we used Coding Lemma to show that, under AD, there is a nonprincipal countably complete ultrafilter on ω_1 . However, using the Coding Lemma is an overkill much less is needed.

Recall that \mathcal{D} is the set of all Turing degrees. Define a map $h: \mathcal{D} \to \omega_1$ by

$$h(d) = \sup(\{ otp((a)_0^2) \mid a \in d \& (a)_0^2 \in WO \}).$$

Show that the projection of the Martin measure under h is a non-principal countably complete ultrafilter on ω_1 .

4. (1/2 page) We saw that AD implies the Perfect Set Property PSP and PSP implies that there is no injection from ω_1 into \mathcal{N} . There are however different ways of showing the non-existence of such an injection.

Prove that if there is a non-principal countably complete ultrafilter on ω_1 then there is no injection from ω_1 into ${}^{\omega}\{0,1\}$.

Hint. Given an ω_1 -sequence of elements of ${}^{\omega}\{0,1\}$, use the ultrafilter to "freeze" all coordinates.

5. (1page) AD postulates that all games where the players play elements of ω are determined. It is however not possible to extend this axiom to games where the players play elements of ω_1 , at least not in the naive way.

Given a set $A \subseteq {}^{\omega}\omega_1$, consider the following game:

where $\alpha_k \in \omega_1$ for all $k \in \omega$. I wins the run $(\alpha_k \mid k \in \omega)$ iff $(\alpha_k \mid k \in \omega) \in A$.

Prove in ZF that there is an undetermined set $A \subseteq {}^{\omega}\omega_1$.

Hint. Try to design a game that produces an injection from ω_1 into \mathcal{N} .

1