1. (1/2 page) Let κ be a regular cardinal and F be a uniform normal filter on κ.
 (a) Prove that F is κ-complete.
 (b) Prove that $\text{CLUB}_\kappa \subseteq F$, that is, CLUB_κ is the smallest uniform normal ideal on κ.

2. (1/2 page) Let κ be a regular cardinal and $S \subseteq \kappa$. Recall that an ordinal α is a limit point of S iff $\sup(S \cap \alpha) = \alpha$. Also recall that if S is stationary then an ordinal $\alpha < \kappa$ is a reflection point of S iff $S \cap \alpha$ is stationary in α. Thus, every reflection point of S is a limit point of S of uncountable cofinality. Define
 \[\text{succ}(S) = \{ \alpha \in S \mid \alpha \text{ is not a limit point of } S \} \]
 and
 \[\text{N}(S) = \{ \alpha \in S \mid \alpha \text{ is not a reflection point of } S \} \]
 Prove that if S is a stationary subset of κ then $\text{succ}(S) \in \text{NS}_\kappa$ and $\text{N}(S)$ is a stationary subset of κ.

3. (1/2 page) Recall that we consider ordinals as topological spaces with the interval topology, and similarly the structure \mathbb{R} of all real numbers also as a topological space with the interval topology. Prove the following
 (a) Every continuous map $f : \omega_1 + 1 \to \mathbb{R}$ is eventually constant.
 (b) Every continuous map $f : \omega_1 \to \mathbb{R}$ is eventually constant.
 Clause (a) follows easily, but I am including it for a comparison with clause (b).

4. (1/3 page) Consider a universe where ω_1 is an everyday reality. Assume there is a train network with $\omega_1 + 1$ many stations which are indexed by ordinals below $\omega_1 + 1$, say $(s_\alpha \mid \alpha < \omega_1 + 1)$ is a list of stations such that the trains depart from station s_0 and stop at each s_α in the increasing order. The last station is s_{ω_1}.
 Now consider the following situation. At each station s_α one passenger gets off, if there is any on the train, and ω many get on. It is understood that the passenger who gets off does not reenter.
 Question: How many passengers arrive at station s_{ω_1}?
5. (1/2 page) Let α, β be ordinals of uncountable cofinality and $f : \alpha \to \beta$ be a normal cofinal map. Prove the following.

(a) If $S \subseteq \alpha$ is a stationary subset of α then $f[S]$ is a stationary subset of β.
(b) If $T \subseteq \beta$ is a stationary subset of β then $f^{-1}[T]$ is a stationary subset of α.