1. (1/2 page) Let $\mu < \kappa$ be regular cardinals. Define
$$E^\kappa_\mu = \{ \alpha < \kappa \mid \text{cf}(\alpha) = \mu \}.$$
(a) Prove that if λ is a regular cardinal such that $\mu < \lambda < \kappa$ then the set of all reflection points of E^κ_μ is unbounded in κ and closed under limits of cofinality λ.
(b) Assume $\kappa = \mu^+$. How big is the set of all reflection points of E^κ_μ?

2. (1/2 page) Let κ be a regular cardinal, A be a set of cardinality larger than κ and C be a club in $[A]^{<\kappa}$ in the sense of Jech. Let θ be a cardinal such that $C \in H_\theta$ and $x \in \mathcal{P}_\kappa(H_\theta)$ be an elementary substructure of H_θ such that $C \in x$. Prove that $x \cap A \subseteq C$.

3. (2/3 page) Let $\mu < \kappa$ be cardinals and κ be regular. Assume T is a tree of height κ such that each level of T has cardinality $< \mu$. Prove that T has a cofinal branch.

4. (1/2 page) Let κ be regular and T be a tree of height κ.
 (a) Assume there is a split above every node of T. Prove that if T has a cofinal branch than T has an antichain of cardinality κ.
 (b) Prove that if T is Aronszajn and pruned then there is a split above every node of T.
 (c) Assume κ is a successor cardinal and T is special. Prove that T is not a Suslin tree.

5. (1/2 page) Let $(L, <)$ be a Suslin line. Recall that we defined an equivalence relation \sim on L as follows:
 $$x \sim y \iff \text{the open interval } (x, y) \text{ is separable}.$$
Prove that each equivalence class $[x]$ is a separable interval in $(L, <)$. A singleton is considered an interval here.
6. (1 page) Let κ be a cardinal.
 (a) Prove that if \diamondsuit_κ holds then κ is regular.
 (b) Prove that \diamondsuit_κ implies the equality $2^{<\kappa} = \kappa$, so in particular if $\kappa = \mu^+$ we have $2^\mu = \kappa = \mu^+$ and $\diamondsuit \Rightarrow \text{CH}$.
 (c) If $\diamondsuit_\kappa(S)$ holds then there is a family \mathcal{F} of stationary subsets of S such that
 (i) $\text{card}(\mathcal{F}) = 2^\kappa$, and
 (ii) If $S_1, S_2 \in \mathcal{F}$ are such that $S_1 \neq S_2$ then $S_1 \cap S_2$ is bounded in κ.
 That is, $\text{NS}_\kappa \upharpoonright S$ is as non-saturated as it can possibly be.
 (d) Prove that if the definition of a \diamondsuit_κ^*-sequence $(A_\alpha \mid \alpha < \kappa)$ is strengthened in that the requirement
 $- \text{card}(A_\alpha) \leq \text{card}(\alpha)$
 is strengthened to
 $- \text{card}(A_\alpha) = 1$
 then this strengthened variant of the \diamondsuit_κ^*-principle is inconsistent. Prove that even the weaker strengthening where we request
 $- \text{card}(A_\alpha) < \mu$
 for some fixed $\mu < \kappa$ is inconsistent.