9.32 Prop. (Bernstein) If there is a well-ordering of reals then the PSP fails.

Proof. Each perfect set is coded by a real. So if \(C \) is a w.o. of reals of type \(\text{card}(\mathbb{R}) \) we can recursively build a set \(A \subseteq \mathbb{R} \) of size \(\text{card}(\mathbb{R}) \) such that \(A \cap C \neq \emptyset \neq A^c \cap C \) for every perfect \(C \subseteq \mathbb{R} \). Then \(A \) is a counterexample to PSP. \(\Box \)

9.33 Corollary (ZF). If PSP holds then there does not exist any injection \(f : \omega_1 \rightarrow \mathbb{R} \).

Proof. If \(f \) is such an injection then \(\text{rng}(f) \) is an uncountable set of reals, so there is some perfect \(C \subseteq \text{rng}(f) \). But then \(C \) is well-ordinalable. But in ZF one can construct a bijection \(g : \mathbb{R} \rightarrow C \). So \(\mathbb{R} \) would be well-ordinalable. Contradiction with Prop. 9.32. \(\Box \) Cor. 9.33.

10. A GLIMPSE INTO FINE STRUCTURE THEORY

10.1 Theorem. There is an \(\Sigma_1 \)-formula \(\phi(v, v_1) \) which defines \(\Delta_0 \)-satisfaction over any transitive \(\Sigma_1 \)-closed well-founded transitive structure. It follows that \(\Delta_0 \)-satisfaction is a \(\Delta_1 \)-properly transitive \(\Sigma_1 \)-closed structure.

Here \(M \models \phi[v, s] \iff M \models \phi(\check{v}, \check{s}) \)

where \(\check{v} \) is the code of \(v \) under some recursive coding fixed in advance. \(s \) is an evaluation of variables in \(v \).

Proof. \(\Delta_0 \)-satisfaction is \(\Delta_1 \) because
\[M \models \phi(\check{v}, s) \iff M \models \phi(\check{v}, s) \]

Construction of \(\phi \): Let's abuse the notation and write \(\phi \) for \(\phi^1 \). Point: if \(\phi \) is \(\Delta_0 \) then
\[M \models \phi[v, s] \iff (u, e, Anu) \subseteq \phi[v,s] \]
where \(u = \mathbf{u}_1 u_1 \cdots u_{n} u_{n} \) and \(m = \) the \# of quantifiers in \(\phi \).

So: \(M \models \phi[s] \iff \exists \exists u \exists v \exists w \exists \exists x \exists y \exists z \exists d \)

(a) \(m, u, v \) are finite ordinals \(m \)
(b) \(u = \mathbf{u}_1 u_1 \cdots u_1 u_{n} u_{n} \) and \(d = \mathbf{d}_1 d_1 \cdots d_1 d_{n} d_{n} \)
(c) \(f : u + 1 \to \text{Formulas} \) and \(g : (u + 1) \times u \to \{ 0, 1 \} \)
(d) \(\forall i < u + 1 \) \(\exists v, u', d \)

\[f(i) = \begin{cases} 0 & \text{if } u = u' \land u = u' \land f(i) = \begin{cases} 1 & \text{if } v \in A \\ 0 & \text{if } \exists i < i \land f(i) = \begin{cases} 1 & \text{if } j \in \mathbf{u}_1 \land i \in \mathbf{u}_1 \\ 0 & \text{if } i \end{cases} \\ 0 & \text{if } \exists i < i \land f(i) = \begin{cases} 1 & \text{if } (\exists v \in u') f(i) = \begin{cases} 1 & \text{if } j \in \mathbf{u}_1 \land i \in \mathbf{u}_1 \\ 0 & \text{if } i \end{cases} \\ 0 & \text{if } \end{cases} \end{cases} \]

(2) \(\phi = f(u) \)

(3) \(\forall i < u + 1 \forall v \in d \)

\[f(i) = \begin{cases} 1 & \text{if } v = v' \land f(i) = \begin{cases} 1 & \text{if } s(w) = s(v') \\ 0 & \text{if } s(w) \notin A \\ 0 & \text{if } s(w) \notin A \\ 0 & \text{if } i \end{cases} \\ 0 & \text{if } \exists i < i \land f(i) = \begin{cases} 1 & \text{if } j \in \mathbf{u}_1 \land i \in \mathbf{u}_1 \\ 0 & \text{if } i \end{cases} \\ 0 & \text{if } \exists i < i \land f(i) = \begin{cases} 1 & \text{if } (\exists v \in u') f(i) = \begin{cases} 1 & \text{if } j \in \mathbf{u}_1 \land i \in \mathbf{u}_1 \\ 0 & \text{if } i \end{cases} \\ 0 & \text{if } (\exists v \in u') f(i) = \begin{cases} 1 & \text{if } j \in \mathbf{u}_1 \land i \in \mathbf{u}_1 \\ 0 & \text{if } i \end{cases} \\ 0 & \text{if } \end{cases} \end{cases} \]

(3) \(g(u, s) = 1 \).

Add (2) to (b): (3) "if \(u \) is a variable occurring in \(\phi \) then \(u \in d \)."

Thm 10.7

10.2. Corollary. There is a \(\Sigma_1 \) formula \(\phi^* \) such that for all \(\Sigma_1 \) formulas \(\phi \) and all evaluating \(s \) of \(\phi^* \) and all transitive \(A \)-sets \(\mathcal{M} \):

\(M \models \phi^*[s] \iff M \models \phi^*[s] \).

Proof (sketch). For \(\Sigma_1 \) : if \(\phi \) is \(\Sigma_1 \) then \(\phi = \exists \theta \psi \theta \).

For some \(\Delta_0 \) formula \(\theta \), then
\[M \models \varphi(s) \iff (\exists a \in M) M \models \varphi(\langle a, s \rangle)
\]
\[\frac{M \models \exists a \phi(\langle a, s \rangle)}{M \models \exists a \phi(\langle a, s \rangle)}
\]

And note the translation between \(\varphi \) and \(\chi \) is reciprocal.

Note: If \(\varphi \equiv \Pi_1 \), we end up with \((\exists a) \phi(\langle a, s \rangle) \) but this can be replaced with \((\forall \alpha) \phi(\langle \alpha, s \rangle) \) which is \(\Pi_1 \).

[Ca 10.2.]

10.3 Prop. Assume \(M \) is a transitive \(\mathcal{L} \)-closed structure with a \(\mathcal{L} \)-definable well-order \(< \). Let \(X \subseteq M \)

\(\gamma \) the set of all \(y \in M \) which are \(\Sigma_{n+1}(M) \)
definable from parameters in \(X \).

Then \(X \subseteq Y \) and \(\gamma \subseteq \Sigma_n M \).

Proof. That \(X \subseteq Y \) is easy. To see \(\gamma \subseteq \Sigma_n M \):

Let \(\alpha(v_0, v_1, \ldots, v_n) \) be a \(\Sigma_n \)-formula and \(a, \ldots, a_n \in Y \) and

assume \(M \models (\exists v_0) \alpha(v_0, a, \ldots, a_n) \). To each \(i \in \{0, \ldots, k\} \)
pick a \(\Sigma_{n+1} \)-formula \(\varphi_i(v_0, v_1, \ldots, v_n) \) and \(x_0, \ldots, x_k \in X \) s.t.

\[\varphi_i = \text{the unique } \exists \text{ formula } M \models \varphi_i(x_0, \ldots, x_k) \]

By introducing during variables \(w, u \) a.a. \(\exists w, x_0, \ldots, x_n \) are the same for all \(i \). Then we can find \(b \in Y \) s.t.

\[M \models \varphi(b, a, \ldots, a_n) \] by minimality,

\[v_0 = b \models (\exists v_0) \ldots (\exists v_k) \left[\bigwedge_{i=0}^{n+1} \varphi_i(v_0, v_1, \ldots, v_n) \land \varphi(v_0, v_1, \ldots, v_k) \land \left(\forall v_0 \right) \left(v_0 < v_0 \rightarrow \neg \varphi(v_0, v_1, \ldots, v_k) \right) \right] \]

This statement has the form \((\exists v_0) \ldots (\exists v_k) \Pi_n \)
so is \(\Sigma_{n+1} \), and defines \(b \) from parameters

in \(X \). So \(b \in \gamma \).