11. Basics of Forcing

11.1. Background setting. We will work with a model M of a sufficiently large fragment of ZFC. We will often have the full ZFC or ZFC. Typically, M will be an universe, so we will often write V for M. M will be the model we will force over; i.e. we will have a poset $P \subseteq M$ and a filter G generic for P over M. (In our previous terminology: G is P-generic when $G = \{ D \in P : D \text{ is dense in } P \}$.)

and we will "adjoin" G to M. In order that this can be done correctly, we will make the following assumption: "Background assumption on generics."

(BAG) We have a model W of ZFC such that:

1. M is a transitive structure in W.
2. For every $p \in P$ there is a filter $G \in W$ generic for P over M such that $p \in G$.

Point: One can show that it is consistent to have this situation, assuming ZFC is consistent. So we prove a meta-theorem of the form:

$$\text{Con}(\text{ZFC}) \Rightarrow \text{Con}(\text{BAG})$$

and then working in W we construct a generic extension which satisfies statements of our interest. This will give us relative consistency results.

11.2. Defining. Assume $P \subseteq M$ is a poset, G is a filter generic for P over M and $x \in M$ we define the evaluation of x by G as follows:

$$x^G = \{ y : (\exists p \in G)((p, y) \in x) \}$$

This is understood as definition by recursion on e.
11.3. Remark. Each set is associated with the characteristic function. If \(A \subseteq M \) and \(\mathcal{Z} \subseteq A \) then the characteristic function \(f_2 : A \to \{0,1\} \) carries the same amount of info as \(\mathcal{Z} \).

Think of \(\mathcal{P} = \{0,1\} \) with \(0 \leq 1 \) and \(\mathcal{E} = \{1\} \). Then
\[
(\mathcal{E}^* \frieden) = f_2^* [\mathcal{E}] = 2
\]

Now more generally, we have a point \(\mathcal{P} \) and a generic \(\mathcal{G} \) in \(\mathcal{M} \).
If \(x : A \to \mathcal{P} \) then \((x)^* = x^* [\mathcal{G}] \). Now we can build \(\mathcal{E}^\mathcal{G} \) but in general, if \(\mathcal{P} \) is a point asking \(x \) to be a function may be too restrictive, in the sense that we may not be able to generate all sorts of interests. Therefore we allow \(x \) to be a binary relation with \(\text{dom}(x) \subseteq \mathcal{P} \).

Notice the above and hearken the case of subsets of \(A \subseteq M \).
In order to build a model with \(\mathcal{E} \) in it we also need to add sets with elements of the form \(\mathcal{E}^\mathcal{G} \) which are not in \(\mathcal{M} \) and go up the cumulative hierarchy. Notice Def 11.2.

When working with evaluations, it will be often useful to consider \(x \) one equivalence of certain specific form.

11.4. Definition. Let \(\mathcal{P} \) be a point. We say that \(x \) is a \(\mathcal{P} \)-term (\(\mathcal{P} \)-name) if

\[
\text{Elements of } x \text{ are ordered pairs } \langle p , y \rangle \text{ s.t. } p \in \mathcal{P} \text{ and } y \text{ is a } \mathcal{P} \text{-term.}
\]

This is a definition by recursion on \(\mathcal{E} \). Exercise: Write a truly correct form of this def. 1.

If \(\mathcal{M} \) is a model as above, \(\mathcal{P} \subseteq \mathcal{M} \) is a poset we denote
\(\mathcal{P}^\mathcal{M} = \text{the class of all } \mathcal{P} \text{-names in } \mathcal{M} \).

11.5. Proposition. Assume \(\mathcal{M} \) is a transitive model, \(\mathcal{P} \subseteq \mathcal{M} \text{ is a poset and } x \in \mathcal{M} \). Then there is a \(\mathcal{P} \)-term \(x \) such that for every generic \(\mathcal{G} \) generic for \(\mathcal{P} \) over \(\mathcal{M} \):
\[
x^\mathcal{G} = x^\mathcal{G}
\]

Proof. Exercise. (Remove all \(x \in \mathcal{E} \) and \((x) \) which are not
ordered pairs of the right kind.

11.6. Terminology. Instead of saying "G is a filter generic for P over M" we say "G is a (P, M)-generic filter".

11.7. Definition. (Canonical terms) Let $P \in M$ be a poset.

(a) For $a \in M$ we let
 $$\check{a} = \{ < \check{p}, \check{x} > \mid x \in a \}$$

(b) $\dot{G} = \{ < \check{p}, \check{x} > \mid p \in P \}$

11.8. Proposition. For every (P, M) generic G:

 (a) $\check{a}^G = a$ (For this reason \check{a} is called the "check name for a".)

 (b) $\dot{G}^G = G$ (So if H is (P, M)-generic then $\check{G}^H = H$

Proof. Exercise.

11.9. Proposition. Let G be (P, M)-generic and $x \in M$.

Then $\text{rank}(\check{x}^G) \leq \text{rank}(x)$.

Proof. Exercise (Recursion on \leq)

11.10. Definition. Let G be (P, M)-generic. We define

$M[G] = \{ x^G \mid x \in M \}$

$M[G]$ is called the generic extension of M by G.

11.11. Proposition. Let G be (P, M)-generic. Then

(a) $M \subseteq M[G]$ and $G \in M[G]

(b) If $N \not\subseteq F$ is transitive such that $M \subseteq N$ and $G \in N$ then $M[G] \subseteq N$

(c) $M[G]$ is transitive

(d) $\text{On}^M[G] = \text{On}^M$

Proof. (a) If $x \in M$ then $x = x^G \in M[G]$. Also $G = \check{G}^G \in M[G]$

(b) Immediate from the definitions of $M[G]$ and that of evaluation.

(c) Immediate from the definition of evaluation: if $z \in x^G$ then $z = G$

for some $y \in M$. So $z \in M[G]$.
11.12. Theorem (Forcing theorem) There is a recursive assignment of formulas in L^T

$$\varphi(v_1, \ldots, v_k) \mapsto \varphi^*(u_1, \ldots, u_k)$$

such that the following holds:

(A) If M is a transitive model, $P \in M$ is a poset, $p \in P$, and $x_1, \ldots, x_k \in M$ then

$$M \models \varphi^*(P, p, x_1, \ldots, x_k)$$

if and only if

For every (P, M)-generic filter G such that $p \in G$:

$$M[G] \models \varphi(x_1^G, \ldots, x_k^G)$$

(B) If G is a (P, M)-generic filter and $x_1, \ldots, x_k \in M$ are

such that

$$M[G] \models \varphi(x_1^G, \ldots, x_k^G)$$

then there is a condition $p \in G$ such that

$$M \models \varphi^*(P, p, x_1, \ldots, x_k)$$

11.13. Remarks

(a) By "model" in THM. 12 we mean a model of sufficient fragment of ZFC itself or usual ZFC.

(b) By "any generic" or "some generic" we mean "every/some" generic in M.

(c) Instead of

$$M \models \varphi^*(P, p, x_1, \ldots, x_k)$$
we write

\[p \vdash_M \varphi(x_1, \ldots, x_n) \]

and read "p forces \(\varphi \) at \(x_1, \ldots, x_n \) over \(M \)".

If \(M, P \) are clear from the context we write

\[p \vdash \varphi(x_1, \ldots, x_n) \quad \text{or} \quad p \vdash \varphi(x, \ldots, x) \]

(d) It is called the forcing relation. But notice this is a schema, for each bounded we have one relation. We cannot define all of them by Tarski's Theorem. If \(P = \{0, 1\} \) with \(\prec \subset \) then \(G \in M \) for every involutive \(\varphi \)-generic \(G \), so \(M[G] = M \). E.g. to check:

\[p \vdash_M \varphi(x_1, \ldots, x_n) \quad \text{iff} \quad M \models \varphi(x_1, \ldots, x_n) \]

So if we could define \(\vdash^M \) by a single formula, we could also define \(\models \) this way.