Theorem (Generic Extension Theorem) Assume $M \models ZF$, $P \in M$ is a poset and G is a (P, M)-generic filter. Then $M[G] \models ZF$. Moreover, if $M \models ZFC$ then $M[G] \models ZFC$.

The proof of Theorem actually shows the following.

Theorem Assume $\sigma_1, \ldots, \sigma_n$ are axioms of ZFC. Then there are axioms of ZFC τ_1, \ldots, τ_k such that if $P \in M$ is a poset, $G \in (P, M)$-generic and

$$M \models \{\sigma_1, \ldots, \sigma_n\} \cup \{\tau_1, \ldots, \tau_k\}$$

Then $M[G] \models \{\sigma_1, \ldots, \sigma_n\}$.

Proposition (Basic properties of the forcing relation)

1. If $p \models \varphi(x_1, \ldots, x_e)$ and $q \leq p$ then $q \models \varphi(x_1, \ldots, x_e)$
2. $p \models \varphi(x_1, \ldots, x_e)$ if and only if $q \models \varphi(x_1, \ldots, x_e)$ for all $q \leq p$
3. $p \not\models \varphi(x_1, \ldots, x_e)$ if and only if $q \not\models \varphi(x_1, \ldots, x_e)$ for some $q \leq p$
4. $p \models (\forall x \in X) \varphi(x_1, \ldots, x_e)$ if and only if $p \models q \models \varphi(x_1, \ldots, x_e)$ for all $q \leq p$
5. $p \models (\exists x \in X) \varphi(x_1, \ldots, x_e)$ if and only if $q \models \varphi(x_1, \ldots, x_e)$ for all $q \leq p$
6. $p \models (\forall x \in X) \varphi(x_1, \ldots, x_e)$ if and only if $q \models \varphi(x_1, \ldots, x_e)$ for all $q \leq p$

Logical rules

(MP) $p \models \varphi(x_1, \ldots, x_e)$ and $p \models (\varphi \rightarrow \psi)(x_1, \ldots, x_e)$ then $p \models \psi(x_1, \ldots, x_e)$

(QR) Let $\varphi(v, x_1, \ldots, x_e)$ be a formula such that v has no free occurrence in p.

If $p \models \varphi(x_1, \ldots, x_e)$ for all x then $p \models (\exists v) \varphi(v, x_1, \ldots, x_e)$.
Axioms of predicate logic

(APL) If $\varphi(\bar{x}_1, \ldots, \bar{x}_e)$ is an axiom of predicate logic then

$$p \vdash \varphi(\bar{x}_1, \ldots, \bar{x}_e) \quad \text{for all } \bar{x}_1, \ldots, \bar{x}_e.$$

So we get: Let σ be a sentence in LST.

If $2E \vdash \sigma$ then $p \vdash \sigma$.

Proof

(1) Pick $\sigma \in (P, M)$ - quod G s.t. $q \in G$. Since $q \in p$ we have $p \in G$. Since $p \vdash \varphi(\bar{x}_1, \ldots, \bar{x}_e)$, we have

$$\mathcal{M}(\sigma) \models \varphi(\bar{x}_1, \ldots, \bar{x}_e).$$

That is:

$$q \in G \implies \mathcal{M}(\sigma) \models \varphi(\bar{x}_1, \ldots, \bar{x}_e).$$

So by the Four-Valued Principle $p \vdash \varphi(\bar{x}_1, \ldots, \bar{x}_e)$.

(2) The non-trivial part is: If

$$D = \{ q \in p \mid q \vdash \varphi(\bar{x}_1, \ldots, \bar{x}_e) \}$$

is dense below p then $p \vdash \varphi(\bar{x}_1, \ldots, \bar{x}_e)$

Assume $G \ni p$ is (P, M) - generic. Prove: prove that $G \cap D \neq \emptyset$. (Exercise)

(3) \subseteq Assume $q \in p$ and $q \vdash \varphi(\bar{x}_1, \ldots, \bar{x}_e)$. Pick $G \ni q$, which is (P, M) - generic. Then $\mathcal{M}(\sigma) \models \varphi(\bar{x}_1, \ldots, \bar{x}_e)$ and $p \in G$ as $q \in p$. So $p \vdash \varphi(\bar{x}_1, \ldots, \bar{x}_e)$

\supseteq Now assume $p \vdash \varphi(\bar{x}_1, \ldots, \bar{x}_e)$. So we can find a (P, M) - generic G s.t. $p \in G$ and $\mathcal{M}(\sigma) \models \varphi(\bar{x}_1, \ldots, \bar{x}_e)$. By (B) on the Four-Valued Principle we can find $p \in G$ such that $p \vdash \varphi(\bar{x}_1, \ldots, \bar{x}_e)$. Because $p \vdash \varphi(\bar{x}_1, \ldots, \bar{x}_e)$. Because $p \vdash \varphi(\bar{x}_1, \ldots, \bar{x}_e)$, but we don't need it here.) s.t. $q \in p$. Then

$q \in p$ and $q \vdash \varphi(\bar{x}_1, \ldots, \bar{x}_e)$.

(4) Exercise
The non-trivial part is following: if
\[D = \{ q \in p \mid q \not\in \neg \varphi(x_1, \ldots, x_n) \} \]
\[\text{is dense below } p \text{ then } p \Vdash \neg \varphi(x_1, \ldots, x_n). \]
To see this, using (3) we show
\[D' = \{ q \leq p \mid q \not\in \neg \varphi(x_1, \ldots, x_n) \} \]
\[\text{is dense below } p. \text{ Then use the Forcing Theorem for the fact that } D \cup G \neq \emptyset \text{ for any } (p, M) \text{-generic } \mathcal{G}, \]
s.t. \(p \in G \).

Let us do \(\Rightarrow \). Assume \(p \Vdash (\exists x) \varphi(x_1, x_2, \ldots, x_n) \). Let \(q \leq p \) and \(G \) be a \((p, M)\)-generic s.t. \(q \in G \). By Forcing Theorem Claim (A): \(M[G] \models (\exists x) \varphi(x_1, x_2, \ldots, x_n) \). So we have some \(a \in M[G] \) s.t. \(M[G] \models \varphi(a, x_2, \ldots, x_n) \). By the definition of \(M[G] \):
\[a = \check{y} \text{ for some } y \in M, \text{ so } M[G] \models \varphi(y, x_2, \ldots, x_n) \]. By Forcing Theorem Claim (B) then \(q \in G \) s.t. \(q \Vdash \neg \varphi(y, x_1, \ldots, x_n) \).

Now since \(q, q' \in G \) we can find \(r \in q, q' \); then
\[\forall \alpha \leq r \varphi(x_1, y, \ldots, x_n) \] and \(r \in p \).

Exercise. \(\Box \) P. 44. 16.

11. 17. Proposition. Basic examples of posets. Given a cardinal \(\kappa \) and sets \(A, B \) s.t. \(A \) is well-orderable, let
\[\text{FN}(A, B, \kappa) = \text{the poset of all functions } p : A \to B \text{ s.t. } \in A \text{ is ordered by reverse inclusion.} \]

We show have the following points.

For a regular cardinal \(\kappa \) and any set \(A : \text{col} \kappa (\kappa, A) = \text{FN}(\kappa, A, \kappa) \)
This is called the collapse forcing, by a density argument of \(G \) is \((\text{col} \kappa (\kappa, A), M) \)-generic and \(q = U_G \) then
\[q : \kappa \to A \text{ is a surjection (Exercise).} \]
In particular: if \(\kappa \) is a cardinal in \(M \) then \(\kappa \) is any generic extension by \(\text{col} \kappa (\kappa, \kappa) \), \(\kappa \) has
For cardinals \(\kappa, \lambda \):

\[\text{Add}(\kappa, \lambda) = \text{Fn}(\kappa \times \lambda, \{0, 1\}, \kappa) \]

If \(\tau \in \text{Add}(\kappa, \lambda) \) is \(\kappa \)-generic and \(\varphi = \text{UG} \) then by a density argument

\[\varphi : \kappa \times \lambda \rightarrow \{0, 1\} \]

such that if we let \(\varphi_\lambda : \kappa \rightarrow \{0, 1\} \) be defined by

\[\varphi_\lambda(\iota) = \varphi(\iota, \lambda) \quad \text{when} \ \iota < \kappa \]

then \(\varphi \neq \varphi_\lambda \), and hence, letting

\[a_\varphi = \{ \iota < \kappa \mid \varphi_\lambda(\iota) = \lambda \} \]

we have

\[\tau \neq \beta \Rightarrow \varphi_\lambda(\tau) \neq \varphi_\lambda(\beta) \]

So we have \(\lambda \) many distinct subsets of \(\kappa \) in \(M^{\varphi_\lambda} \).

An \(\lambda \)-subset of \(\kappa \) added to a model by \(\text{Fn}(\kappa, \lambda, \{0, 1\}, \kappa) \)

is called a Cohen subset of \(\kappa \). So \(\text{Add}(\kappa, \lambda) \) adds \(\lambda \) many Cohen subsets of \(\kappa \) to \(M \).

Given a regular cardinal \(\kappa \) and a set \(A \):

\[\text{Coll}(\kappa, A) = \text{the set of all functions } \varphi \text{ s.t.} \]

\[\cdot \text{dom}(\varphi) \subseteq [A \times \kappa]^{< \kappa} \]

\[\cdot \text{For any } (a, \beta) \in \text{dom}(\varphi): \]

\[\varphi(a, \beta) \in A \]

By a density argument of \(G \in \text{Coll}(\kappa, A), \kappa \)-generic and \(\varphi = \text{UG} \) then

\[\varphi : \kappa \times \kappa \rightarrow UA \]

and for every \(a \subseteq A \) the function \(\varphi_a : \kappa \rightarrow a \) defined by

\[\varphi_a(\beta) = \varphi(a, \beta) \]

is a surjection of \(\kappa \) onto \(a \). So \(\text{Coll}(\kappa, A) \)
adds a surjection of \(\kappa \) onto \(a \) for every \(a \subseteq A \).
The poset \(\text{Coll}(\alpha, \kappa) \) is called the Levy collapse of \(\text{Coll}(\alpha) \) to \(\kappa \).

If \(\kappa \in \Omega \), then we usually write \(\text{Coll}(\alpha, < \kappa) \) instead of \(\text{Coll}(\alpha, \kappa) \).

1.11. Lemma. Work in \(\mathbb{M}_{\mathcal{E} \mathcal{C}} \). Assume \(\mathcal{P} \) a \(\kappa \)-c.c. poset when \(\kappa \) is a cardinal. Let \(A, B \in \mathcal{M}, \ G \in \mathcal{P} \) be \((\mathcal{P}, \mathcal{M}) \)-generic and \(f : A \rightarrow B \) be s.t. \(f \in \mathcal{M}(G) \).

Then there is a function \(F \in \mathcal{M} \) s.t.

- (i) \(\text{dom}(F) = A \)
- (ii) \(F(a) \in F(a) \subseteq B \) for all \(a \in A \)
- (iii) \(\text{card}^\mathcal{M}(F(a)) < \kappa \) for all \(a \in A \)

\[\text{Proof:} \quad \text{Since } f : A \rightarrow B \text{ in } \mathcal{M}(G), \text{ by the definition of } \mathcal{M}(G) \text{ there is some } \mathcal{P}-\text{term } \tilde{f} \in \mathcal{M} \text{ s.t. } f = \tilde{f} \mathcal{G}. \text{ So } \]

\[\mathcal{M}(G) \models \tilde{f} : A \rightarrow B \]

By Forcing Theorem Clause (2) there is some \(p \in G \) s.t.

\[\text{p} \vdash \tilde{f} : A \rightarrow B \]

Fix \(a \in A \).

(i) \(b \neq b' \) are elements of \(B \) and \(a \neq a' \) are conditions below \(\mathcal{P} \) s.t.

\[\text{p} \vdash \tilde{f}(a) = b \quad \text{and} \quad \text{p} \vdash \tilde{f}(a') = b' \]

then \(a \perp a' \).

Why? If not, there would be some \(c \leq a, a' \) that \(f \nabla \tilde{f}(a) = f \nabla \tilde{f}(a') \). Now if
H is any (P, \mathcal{H})-generic with $\alpha \in H$ then

$q, q' \in H$, hence

\[\hat{f}^H(\alpha^H) = b^H \quad \hat{f}^H(\alpha^H) = b^H \]

\[\hat{f}^H(a) = b \quad \hat{f}^H(a) = b' \]

Technically: $<q, b> \in \hat{f}^H$

But recall \hat{f}^H is a function, and $p \in H$

becomes $a \leq q, q' \leq p$. Contradiction. \(\square \).

Now assume $a \in A$ let

\[D_a = \{ q \in p \mid (\exists b \in B)(q \vdash \hat{f}(a) = b) \} \]

Exercise D_a is an open subset of p^A.