12. EXAMPLES OF FORCING

Convention: We face over V. So we have V in place of M.

(1) Forcing CH is regular. Let P be defined as follows:
 - Conditions are functions $p : a \rightarrow \mathbb{P}(a)$ where $a \leq n^+$ and $\text{card}(a) \leq \aleph_1$.
 - Order $p \leq q \iff p \geq q$

Properties of P:
 (a) P is n^+-closed. So in particular P does not add any function $f : n \rightarrow V$.
 So if G is (P, V)-generic then $\mathbb{P}(G)^V = \mathbb{P}(G)^n$.

 (b) P has the $(2^n)^+ - $-closure property. So P is $(2^n)^-$-closed.
 Hence P preserves all cardinals and cofinalities $\geq 2^n$.
 (Exercise)

 (c) Let $g = U G$, $g : n^+ \rightarrow \mathbb{P}(n)$ is a surjection.
 This follows by a density argument. (Exercise.)

Conclusion: $V[G] \models 2^n = n^+$. So if $n = \omega$ then $V[G] \models CH$

\[n \xrightarrow{\mathbb{P}} n^+ \xrightarrow{\mathbb{P}} 2^n \xrightarrow{\mathbb{P}} (2^n)^+ \]

Notice: if $V \models 2^n = n^+$ then P does not collapse any cardinals.
(2) Facing Ω_κ. Assume κ is regular, $\kappa > \omega_1$.

We define \mathcal{P} as follows:

Conditions
$p = (a_\gamma | \exists \delta | a_\delta \in a_\gamma$ and $a_\delta \in \gamma$
for all $\gamma < \delta$

Ordering $p \leq q \iff p \subseteq q$

(a) \mathcal{P} is κ-closed (generic, easy)

So if $G \subseteq (\mathcal{P}, \cap) -$generic then $V, V[G]$ agree on

| cardinalities + cofinalities | $\leq \kappa$. In particular κ is regular in $V[G]$.

Let $A_G = \bigcup G$

We show:

A_G is a $\langle \diamondsuit \rangle$ sequence in the sense of $V[G]$.

We will use the following

12.1 Proposition. Assume \mathcal{Q} is a κ-closed forcing where κ is regular, $\gamma < \kappa$, $p \in \mathcal{Q}$ and x is a \mathcal{Q}-term s.t.

$p \Vdash x \subseteq \gamma$

Then then are $q \leq p$ and a set $a \subseteq x$ s.t.

$q \Vdash x = a$

Proof. Taut. Point using the κ-closedness, we can fix the

true value of $\exists \gamma' x$ by single conditions below γ'.

\square (Prop 12.1.)

To prove that A_G is a $\langle \diamondsuit \rangle$-sequence in $V[G]$ it suffices to do the following. Given a condition $p \in \mathcal{P}$ and $1^{\mathcal{P}}$-terms x, y s.t.
(1) \[\varphi \vdash \forall x \in \mathcal{U} \wedge C \text{ is a club in } \mathcal{U} \]
we find a condition \(p^* \leq \varphi \) and some \(\gamma \in \mathcal{U} \) such that
\[\varphi_{\downarrow \gamma} \vdash \forall y \in C \wedge (A_G)\gamma = \check{x} \wedge \check{y} \]

One way of thinking about this is to fix \(C \) first and then apply (1). Then the proof of (2) shows that (2) holds for densely many \(p^* \leq \varphi \).
Since \(p \in G \), \(G \) must also contain one of these \(p^* \).
Thus apply (A) in the Forcing Theorem.

So assume (1) holds. We construct a descending chain of conditions \(\langle p_n \mid n \in \omega \rangle \) and an increasing sequence of ordinals \(\langle x_n \mid n \in \omega \rangle \) as follows.

Because \(\varphi \vdash \forall x \in \mathcal{U} \wedge C \text{ is a club in } \mathcal{U} \) we can find
some \(p_0 \leq \varphi \) and \(x_0 > \text{lh}(p_{ \downarrow p}) \) s.t.
\[p_0 \vdash x_0 \in C \quad \text{(Application of Forcing Theorem, Exercise)} \]

Now using (A) find some
condition \(p_0'' \leq p_0 \) and some \(x_0 \leq x_0'' \) s.t.
\[p_0'' \vdash \forall \check{x} \wedge \check{x_0} = \check{x_0} \]

If \(\text{lh}(p_0) < x_0 \) extend \(p_0'' \) to some \(p_0 \leq p_0'' \) s.t.
\[\text{lh}(p_0) \geq x_0 \]. Otherwise let \(p_0 = p_0'' \).

Now if \(x, p_n, d_n \) are already found, find \(p_{n+1} \leq p_n \)
and \(d_{n+1} > d_n \) similarly, so that

(3) \[d_{n+1} \geq \text{lh}(p_n) \]

(4) \[p_{n+1} \vdash \forall \check{x} \wedge \check{d_{n+1}} = \check{x_{n+1}} \]
At the step w, let

$$P_w = \bigcup_{n \in w} P_n$$

$$x_w = \bigcup_{n \in w} x_n$$

$$\delta = \sup_n \delta_n$$

$$P^\delta = P_w \cup \{ x < \delta, x_w \geq \gamma \}$$

\[\delta \]

\[\delta_0 \quad \delta_1 \quad \delta_2 \quad \ldots \quad \delta \]

\[\delta(p) \quad \delta(p_0) \quad \delta(p_2) \]

(5) Since $P_w \subseteq P_n$ for all n:

$$P_w \downarrow x_n = x_n$$

Since $\delta = \sup_n \delta_n$ and $P_w \downarrow \tilde{C}$ is a club in \tilde{C},

so $P_w \downarrow \tilde{\delta} \in \tilde{C}$

(6) By (4) we get

$$P_w \downarrow x_n \in C$$

so $P_w \downarrow x = x_w$

It follows:

(7) $P^\delta \downarrow x \in \tilde{C}$

Now notice (7) says the same thing as (2), or

$$(A_0) \tilde{\delta} = P^\delta(\delta)$$

\square
3. Sutchin Tree (2nd) The proof is as follows:

Conditions
- $p \triangleleft P$, if p is a countable tree in a set of ordinals below ω_1. Denote the corresponding tree ordering by \leq_p. We also require $\omega_1 \leq p$.

Ordering
- End-extension: $p \leq q$ if q consists of all levels of p up to $\text{ht}(q)$, and $\leq_q = \leq_p$ restricted to these levels.

Addition to conditions:
- $\text{ht}(p)$ is a successor ordinal, and
- For any $q \leq p < \text{ht}(p)$ and $q \in \text{el}(p)$, there exists $t \in \text{cl}(p)$ such that $t \leq_p p'$.

(a) P is ω_1-closed (Essence)
- If $(P_n : n \in \omega)$ is a descending chain:
 - Let $P_\omega = \bigcup P_n$
 - Then obtain p' a lower bound by adding a last level using (2). For any $t \in P_\omega$, add a node t' in the last level.

(b) ω_1 is preserved in the generic extension, i.e., $\omega_1(G) = \omega_1$ whenever $G \in (P,V)$-generic.

(c) For a (P,V)-generic G let
 $$T_G = (\omega_1, \bigcup \{ \leq_p | p \in G \})$$
Then T_G is tree on w_1. (Exercise.) There is a density argument. Show:

- For each $d \in w_1$

 $$D_d = \{ p \in P \mid d \in \text{ode in } p \}$$

 is dense in P.

Next show: \mathcal{L}_G is a tree ordnij (Exercise).

(C) The levels of T_G are countable, as the ordnij of P is by end-extensions.

(d) $ht(T_G) = w_1$. (Exercise) Again a density argument. By induction on d, using closure of P for limit d, show:

$$E_d = \{ p \in P \mid ht(p) \geq d \}$$

is dense in P.

Summary so far:

(a) T_G is an w_1-tree in $\mathcal{V}(G)$.

We show: T_G is a Sushin tree in $\mathcal{V}(G)$.