WEEK 6

1. Let $\langle X, \prec \rangle$ be a linear ordering that satisfies the c.c.c., but is not separable. Show that there is a linear ordering $\langle Y, \prec \rangle$ that

 (a) satisfies the c.c.c., but is not separable,

 (b) is dense and without endpoints,

 (c) is Dedekind complete.

 Hint. The point is to arrange (b), as (c) can be arranged by forming a Dedekind completion and verifying that it preserves (a) and (b). Given $x, y \in X$, let $x \sim y$ just in case that the interval $(\min\{x, y\}, \max\{x, y\})$ contains a countable dense subset. Notice that \sim is an equivalence relation on X; let $Y' = X/\sim$ and \prec be the linear ordering on Y' induced by \sim. Show that $\langle Y', \prec \rangle$ is a dense linear ordering that satisfies (a). The key point is the observation that each equivalence class is separable; the proof of this observation builds on the fact that $\langle X, \prec \rangle$ satisfies the c.c.c. Y' can have endpoints, but if we remove them, we obtain a linear ordering satisfying both (a) and (b). This is our desired $\langle Y, \prec \rangle$.

2. Show that \Diamond implies the Continuum Hypothesis.

 Hint. Show that every subset of ω is on a \Diamond-sequence.

3. Given a cardinal κ and a set X of cardinality κ, we say that two sets $A, B \subseteq X$ are *almost disjoint* just in case that $A \cap B$ is of size smaller than κ. We say that $A \subseteq \mathcal{P}(X)$ is an *almost disjoint family* just in case that A consists of pairwise almost disjoint sets of cardinality κ.

 (a) Show that there is an almost disjoint family $A \subseteq \mathcal{P}(\omega)$ such that $\text{card}(A) = 2^\omega$. Notice that any disjoint family of subsets of ω is of size at most ω.

 (b) Let κ be regular and let $\{x_\xi; \xi < \kappa\}$ be an almost disjoint family of subsets of κ. Modify the Cantor diagonal argument to construct a set $x \subseteq \kappa$ that is almost disjoint with each x_ξ.

 (c) Use (b) to construct, by transfinite recursion on κ^+, an almost disjoint family $A \subseteq \mathcal{P}(\kappa)$ of cardinality κ^+. In general, this is the largest almost disjoint family that can be constructed in ZFC alone.
(d) Assume that \diamondsuit_κ holds. Show that there is an almost disjoint family $\mathcal{A} \subseteq \mathcal{P}(\kappa)$ of size 2^κ which consists of stationary sets (stationary in κ, of course).

Hint. (a) Find an almost disjoint family $\mathcal{A}' \subseteq \mathcal{P}(^{<\omega}\{0,1\})$ of size 2^ω. Recall that there are 2^ω functions $G : \omega \to \{0,1\}$.

(b) If $\xi < \kappa$, we can fix some $\gamma < \kappa$ such that $x_\xi - \gamma$ is disjoint with $x_{\bar{\xi}} - \gamma$ for all $\bar{\xi} < \xi$.

(c) At each step of the recursion, enumerate the family constructed so far in the order type κ.

(d) Fix some \diamondsuit_κ-sequence $\langle A_\alpha ; \alpha < \kappa \rangle$. Given any $A \subseteq \kappa$, consider the set $S_A = \{ \xi < \kappa ; A \cap \xi = A_\xi \}$.