WEEK 5

1. (ZFC) Prove the Ramsey theorem which asserts that $\omega \rightarrow (\omega)^n_m$ for all integers $m, n > 0$. Use the tree argument.

 Hint. Proceed by induction on n. Regarding the induction step from n to $n + 1$: Try to combine ideas from the proof of the property $\omega \rightarrow (\omega)^2_2$ and those form the proof of the property $\kappa \rightarrow (\kappa)^n_\kappa$ for weakly compact κ. What you have to do is to construct a finitely branching tree T on ω (in the lecture we constructed a subtree of $\langle \omega, 2 \rangle$ labeled by integers, but in the general case it might be simpler to construct a tree directly on ω) of height ω such that for every branch b through T, every $a \in [b]^n$ and every $i, j \in b$ that are above all elements of a in the sense of $<_T$, the sets $a \cup \{i\}$ and $a \cup \{j\}$ have the same colour.

2. (ZFC) Assume there is a countably complete uniform ultrafilter on some set I. Show that there is a measurable cardinal.

 Hint. Argument 1: Use the ultrapower construction. Argument 2: Observe that I can be taken to be a cardinal. Let κ be the least such cardinal. Show that any σ-complete uniform ultrafilter on κ is actually κ-complete: If the completeness of such an ultrafilter were γ^+ for some $\gamma < \kappa$, there would be a countably complete uniform ultrafilter on γ.

1