WEEK 8

1. Let \mathbb{P} be a poset and σ, σ' be two \mathbb{P}-names. Find a \mathbb{P}-name τ such that for every \mathbb{P}-generic filter G the following holds:

 (a) $\tau_G = \{\sigma_G, \sigma'_G\}$;

 (b) $\tau_G = \langle \sigma_G, \sigma'_G \rangle$;

 (c) $\tau_G = \bigcup \sigma_G$.

 Hint. (c) Notice that if $\rho_G \in \bigcup \sigma_G$ then there are $p, q \in \mathbb{P}$ and a \mathbb{P}-name ρ' such that $\langle p, \rho' \rangle \in \sigma$, $\langle q, \rho \rangle \in \rho'$ and p, q are compatible.

2. Assume \mathbb{P} is a poset in M and $A, B \in M$. Let $p \in \mathbb{P}$ and \dot{f} be a \mathbb{P}-name such that

 $$p \Vdash \dot{f} : \dot{A} \rightarrow \dot{B}.$$

 Let $q \leq p$, $a \in A$ and $b \in B$ be such that

 $$q \Vdash \dot{f}(\dot{a}) = \dot{b}.$$

 Show that if $c \in B$ is such that $c \neq b$ and $q' \in \mathbb{P}$ is compatible with q then

 $$q' \not\Vdash \dot{f}(\dot{a}) = \dot{c}.$$

3. Let \mathbb{P} be a separative poset in M and let G be a \mathbb{P}-generic filter over M. Let $F \in M$ be such that $F \subseteq G$. Show that there is some $p \in \mathbb{P}$ such that

 $$p \leq r \text{ for all } r \in F.$$

 Hint. This is a density argument. Try to find a dense set D in \mathbb{P} such that any element $p \in D \cap G$ satisfies the above condition. (See the arguments we did in class for inspiration.)

4. Generalize the argument we had when we constructed canonical names for subsets of A (this came in computing of the upper bound on the size of $\mathcal{P}(\omega)$ in $M[G]$).
Thus, \(\mathbb{P} \) is a poset in \(M \) and we have \(\mathbb{P} \)-names \(\sigma, \tau \) and some \(p \in \mathbb{P} \) such that
\[
p \models \sigma \subseteq \tau.
\]
Find a \(\mathbb{P} \)-name \(\sigma' \) such that \(\text{rng}(\sigma') \subseteq \text{rng}(\tau) \) (that is, if \(\langle r, \rho \rangle \in \sigma' \) then \(\langle r', \rho \rangle \in \tau \) for some \(r' \)) and
\[
p \models \sigma = \sigma'.
\]