WEEK 9

1. Let M be an arbitrary ground model. In M, consider the poset $\text{col}(\omega_1, 2^{\omega})$. Let G be a generic filter for this poset over M. Show:

(a) M and $M[G]$ have the same subsets of ω.

(b) In $M[G]$, there is a surjection $g : \omega_1 \to \mathcal{P}(\omega)$, i.e. $M[G] \models \text{CH}$.

(c) In M, the poset $\text{col}(\omega_1, 2^{\omega})$ satisfies the $(2^{\omega})^+\text{-c.c.}$

(d) $\omega_1^{M[G]} = \omega_1^M$, $\omega_2^{M[G]} = ((2^{\omega})^+)^M$ and all cardinals and cofinalities $> 2^{\omega}$ are preserved.

Hint. (c) use the Δ-system lemma in the usual way. Notice that you do NOT have GCH in M, so you have to use general facts from cardinal arithmetic only.

2. Let $M \models \text{GCH}$. Let κ be regular in M and λ be a cardinal in M such that $\text{cf}^M(\lambda) > \kappa$. Force with $\text{Add}(\kappa, \lambda)$ over M. Show that if G is a generic filter for this poset over M, then

(a) All cardinals and cofinalities are preserved.

(b) $M[G] \models 2^\kappa = \lambda$.

Hint. Follow the computation we did in lecture with $\text{Add}(\omega, \lambda)$. This time you have to use the chain condition for $\text{Add}(\kappa, \lambda)$ from the lecture, as well as the fact that your forcing is κ^+-closed.

3. Start with a model M that satisfies the GCH. In M, let $\kappa < \kappa'$ be regular cardinals and $\lambda \leq \lambda'$ be cardinals such that $\text{cf}(\lambda) > \kappa$ and $\text{cf}(\lambda') > \kappa'$. Force first with $\text{Add}(\kappa', \lambda')$ over M, getting a generic filter G and then with $\text{Add}(\kappa, \lambda)$ over $M[G]$, getting a generic filter H. Show:

$$M[G][H] \models 2^\kappa = \lambda \ & 2^{\kappa'} = \lambda'.$$

Hint. You can refer to Problem 2 above. The only tricky part is computing the upper bound for 2^κ. Follow the usual steps. However, this time you don’t have GCH in $M[G]$. To compute the size of the set of all canonical names for subsets of κ, use the fact that $\text{Add}(\kappa', \lambda')$ is κ'-closed.
4. Let M be arbitrary, let κ be regular in M and $\lambda > \kappa$ be strongly inaccessible in M. Force with $\text{Col}(\kappa, < \lambda)$ over M, getting a generic filter G. Show:

(a) $\text{Col}(\kappa, < \lambda)$ satisfies the λ-c.c.

(b) All cardinals and cofinalities $\leq \kappa$ and $\geq \lambda$ are preserved.

(c) $\lambda = \kappa^+ M[G]$.