WEEK 2

1. Let X be a topological space with a countable base. In the following steps show that, under $\text{MA}(\kappa)$, the meager ideal is κ^+-complete. The arguments here resemble very much those which are used in the analysis of almost disjoint forcing.

Fix a countable base of topology \mathcal{B}. You have to show that the union of $\leq \kappa$ many meager sets is meager.

(a) Observe that it suffices to show: If \mathcal{C} is a family of closed nowhere dense sets with $\text{card}(\mathcal{C}) \leq \kappa$ then $\bigcup \mathcal{C}$ is meager.

(b) Define a poset \mathbb{P} as follows:

Conditions are pairs of the form $\langle p, F \rangle$ where
- p is a function whose domain is a finite subset of ω and for each $n \in \text{dom}(p)$, the value $p(n)$ is a finite subset of \mathcal{B};
- F is a finite subset of \mathcal{C}.

Ordering is defined as follows

$$\langle p', F' \rangle \leq \langle p, F \rangle$$

just in case that
- $\text{dom}(p') \supseteq \text{dom}(p)$;
- $p'(n) \supseteq p(n)$ whenever $n \in \text{dom}(p)$;
- $F' \supseteq F$;
- if $n \in \text{dom}(p') - \text{dom}(p)$ then $\bigcup p'(n)$ is disjoint with every $C \in F$.

(c) The idea of the definition of \mathbb{P} is the following. The sequences p are approximations to a countable sequence of closed nowhere dense sets. If we choose a sufficiently generic G on \mathbb{P}, let

$$g = \bigcup \{p; \langle p, F \rangle \in G \text{ for some } F\}.$$

For each $n \in \omega$, let $A_n = \bigcup g(n)$. Then each A_n will be an open dense set in X, so $B_n \overset{\text{def}}{=} X - A_n$ will be closed nowhere dense. Moreover, $\bigcup \mathcal{C} \subseteq \bigcup \{B_n; n \in \omega\}$. Thus, g codes a countable sequence of closed nowhere dense sets that covers $\bigcup \mathcal{C}$.
(d) For each \(n \in \omega \) find a countable family of dense sets \(D_n \) in \(\mathbb{P} \) such that if \(G \) is \(D_n \)-generic then the corresponding \(g \) satisfies that \(\bigcup g(n) \) is an open dense set in \(X \).

(e) For each \(C \in \mathcal{C} \) find a dense set \(D_C \) in \(\mathbb{P} \) such that if \(G \) meets \(D_C \) and is sufficiently generic, then \(X - \bigcup g(n) \) covers \(C \) whenever \(n \) is suitably chosen.

(f) Put (d) and (e) together and find a family \(\mathcal{D} \) of dense sets in \(\mathbb{P} \) such that if \(G \) is \(\mathcal{D} \)-generic, then we obtain \(g \) as in (c).

(g) Show that \(\mathbb{P} \) satisfies the c.c.c. so that you can apply MA(\(\kappa \)).

2. Return to the Stone representation of Boolean algebras from the Week 1 assignment. Let \(\mathbb{B} \) be a Boolean algebra.

(a) Show that the family \(\mathcal{B} = \{ B_b; \ b \in \mathbb{B} \} \) is a base of some topology \(\mathcal{T} \) on the set of all ultrafilters \(X(\mathbb{B}) \). The topological space \(\langle X(\mathbb{B}), \mathcal{T} \rangle \) is called the Stone space of \(\mathbb{B} \), and \(\mathcal{T} \) is called the Stone topology.

(b) Show that the Stone topology is Hausdorff.

(c) Show that each set \(B_b \) is clopen, i.e. it is both open and closed in the Stone topology.

(d) Show that the Stone space is compact.

Hint. First show that \(\mathcal{B} \) is a base for the collection of all closed sets, i.e. each closed set can be expressed as the intersection of some \(\mathcal{F} \subseteq \mathcal{B} \). Then observe that showing that \(X(\mathbb{B}) \) is compact boils down to showing that if \(\mathcal{F} \subseteq \mathcal{B} \) is a family with the finite intersection property then \(\bigcap \mathcal{F} \neq \emptyset \). Finally show that \(\bigcap \mathcal{F} \neq \emptyset \) for any such \(\mathcal{F} \); here you use the prime ideal theorem.