HOMEWORK WEEK 3

Remark. Problems marked with (\star) or more stars are more challenging. The more stars the more challenge.

1. Let $\langle X, <_X \rangle$ and $\langle Y, <_Y \rangle$ be two countable dense linear orderings without endpoints. Prove that they are isomorphic, that is, show the existence of a bijection $f: X \to Y$ such that $x <_X x' \iff f(x) <_Y f(x')$ for all $x, x' \in X$.

Hint. Fix enumerations $X = \{x_n \mid n \in \omega\}$ and $Y = \{y_n \mid n \in \omega\}$. Then construct an isomorphism f by induction on n using the back-and-forth construction: $f(x_0)$ can be defined arbtrarily. Then define the inverse image $f^{-1}(y_0)$ (if $f(x_0) \neq y_0$ so that the finite approximation to the map obtained this way is injective and order-preserving (in both directions). Inductively, granting that $f(0), \ldots, f(n)$ and $f^{-1}(y_0), \ldots, f^{-1}(y_n)$ have been defined, extend the definition of f to x_{n+1} in the domain and y_{n+1} in the range (if not yet defined) in a way that the injectivity and preservation properties of f are kept. Show that after ω steps you obtain an isomorphism f.

Also, think why the back-and-forth approach is used here.

- **2.** Given a linear ordering $\langle L, <_L \rangle$ and a set $X \subseteq L$, we say that an element $x \in L$ is the supremum of X and write $x = \sup(X)$ if and only if
 - (a) $z <_L x$ for every $z \in X$.
 - (b) For every $y <_L x$ there is some $z \in X$ with $y \leq_L z \leq_X x$.

The notion of infimum is defined dually. A linear ordering $\langle L, <_L \rangle$ is Dedekind complete if and only if every bounded subset of L has a supremum in L. (A set $X \subseteq L$ is bounded, if and only if there is some $x \in X$ such that $z <_L x$ for all $z \in X$.)

Let $\langle L, <_L \rangle$ be a dense linear ordering without endpoints. Prove that there is a linear ordering $\langle K, <_K \rangle$ with the following properties:

- (i) L is a dense subset of K.
- (ii) $\langle K, \langle K \rangle$ is Dedekind complete.
- (iii) $\langle K, <_K \rangle$ is a dense linear ordering without endpoints.

Hint. A cut in $\langle L, <_L \rangle$ is a downward closed set without largest element. (For instance, $(-\infty,0)$ and $(-\infty,\sqrt{2}) \cap \mathbb{Q}$ are cuts in $\langle \mathbb{Q},< \rangle$, but in the latter case the cut cannot be identified as an interval in \mathbb{Q} .) Let K be the set of all cuts in $\langle L, <_L \rangle$ and $<_K$ be the sharp inclusion \subset . Prove that this gives the desired Dedeking completion.

3. Let $\langle K, <_K \rangle$ be a strict linear ordering and L be a dense subset of K; let $<_L$ be the induced linear ordering on L. Prove that $\langle L, <_L \rangle$ is a dense linear ordering if and only if $\langle K, <_K \rangle$ is a dense linear ordering.

4. Prove Cantor's theorem: If $\langle L, <_L \rangle$ and $\langle L', <_{L'} \rangle$ are two separable Dedekind complete dense linear orderings without endpoints then $\langle L, <_L \rangle$, $\langle L', <_{L'} \rangle$ are isomorphic.

Hint. Use the previous exercises. Start with picking an isomorphism between the corresponding countable dense subsets and try to extend it.

5. Let $\langle S, \langle S \rangle$ be a Suslin line. On S define a binary relation \sim by

$$x \sim y \iff$$
 the interval (x, y) is separable.

Prove the following.

- (a) \sim is an equivalence relation on S and $<_S$ is \sim -invariant; this makes it possible to define the qotient $\langle S', <' \rangle = \langle S/\sim, <_S/\sim \rangle$.
- (b) $\langle S', <' \rangle$ is a Suslin line.
- (c) Every nonempy open interval in $\langle S', <' \rangle$ is nonseparable.
- (d) $\langle S', <' \rangle$ is a dense linear ordering. Moreover, if we remove its endpoints (if they exist) the result will be a dense linear ordering without endpoints.

Remark. In general, if $\langle L, <_L \rangle$ is a linear ordering with endpoints, the removal of the endpoints does not guarantee that we obtain a linear ordering without endpoints. That is, the resulting linear ordering still may have endpoints. (Try to find a counterexample; more precisely find an example of a linear ordering with endpoints such that if we remove the endpoints we obtain a linear ordering with endpoints, and such that this happens even if we iterate this procedure ω times, and after ω steps we end up with the empty set.) This makes (d) somehow special. Try to figure out why it happens in (d) and to formulate a reasonable general sufficient condition guaranteeing that if we remove the endpoints once then we obtain a linear ordering without endpoints.

6. Let $\langle T, <_T \rangle$ be a tree. Given two distinct maximal branches b, c in T, observe that there is a level T_{α} such that $b(\alpha) \neq c(\alpha)$. Here $b(\alpha)$ is the unique node in the intersection $b \cap T_{\alpha}$. For b, c as above let

$$\alpha(b,c)$$
 = the least α such that $b(\alpha) \neq c(\alpha)$.

Let

B =the set of all maximal branches in T.

Assume that < is some strict linear ordering on T and define a binary relation \prec on B by

$$b \prec c \iff b(\alpha(b,c)) < c(\alpha(b,c)).$$

Prove that \prec is a strict linear ordering on B.

7. Let $\langle \omega_1, <_T \rangle$ be a Suslin tree on ω_1 with splitting above every node (so $T = \omega_1$ here). Also let < be the natural well-ordering of ordinals. Let $\langle B, \prec \rangle$ be constructed as in Exercise 6. Prove that $\langle B, \prec \rangle$ is a Suslin line.

Hint. To see the non-separability, notice that every maximal branch is countable. To see that $\langle B, \prec \rangle$ is c.c.c. notice that if $b, c \in B$ are such that $b \prec c$ then there is some $\xi \in \omega_1$ such that ξ is larger than all elements of b-c and smaller than all elements of c-b in the lexicographic ordering of the tree (see Week 2, Exercise 12).

8. Let $\langle T, <_T \rangle$ be a Suslin tree. Prove that $\langle T, <_T \rangle$ is not embeddable into real numbers, that is, there is no map $\sigma: T \to \mathbb{R}$ such that $x <_T y \implies \sigma(x) < \sigma(y)$ for all $x, y \in T$; here < is the natural ordering of real numbers.

Hint. Assume for a contradiction there is such a map. To each $x \in T$ pick some $x' \in T$ such that x is the immediate predecessor of x'. Then pick some rational number $q_x \in (\sigma(x), \sigma(x'))$ and look what happens.

9. Let $\langle T, <_T \rangle$ be a Suslin tree with splittings above every node. Let

$$T' = \{ \langle x, y \rangle \in T \times T \mid \operatorname{ht}_T(x) = \operatorname{ht}_T(y) \}$$

and $<_{T'}$ be the binary relation on T' defined from $<_T$ coordinate-wise, that is, for $\langle x, y \rangle$ and $\langle x', y' \rangle$ in T' we let

$$\langle x, y \rangle <_{T'} \langle x', y' \rangle \iff (x <_T y \& x' <_T y')$$

Prove that $\langle T' <_{T'} \rangle$ is an Aronszajn tree that is not Suslin and not embeddable into \mathbb{R} .

Hint. For simplicity, assume first that the splittings are immediate.

10. Let κ be regular. Prove that a Kurepa κ -tree exists if and only if there exists a Kurepa κ -family.

Hint. Given a Kurepa κ -tree $\langle \kappa, <_T \rangle$ (recall that we may let w.l.o.g. $T = \kappa$), consider the family of all cofinal branches through the tree. Conversely, given a Kurepa κ -family $\mathfrak{K} \subseteq \kappa$, consider $T = \{\chi_A \mid \alpha \mid A \in \mathfrak{K} \& \alpha < \kappa\}$ where χ_A is the characteristic function of A.

11. Let κ be a singular cardinal of cofinality γ . Let $\langle \kappa_{\xi} \mid \xi < \gamma \rangle$ be a strictly increasing sequence of cardinals converging to κ . Prove that

$$\operatorname{card}(\prod_{\xi<\gamma}\kappa_{\xi})=\kappa^{\gamma}$$

Hint. $\gamma \cdot \gamma = \gamma$.

- 12. Assume κ is a singular cardinal with uncountable cofinality and there are stationarily many $\mu < \kappa$ such that $2^{\mu} = \mu^{++}$. Imitate the proof of Silver's theorem to show that $2^{\kappa} \leq \kappa^{++}$.
- 13. Notice that the proof of Silver's theorem shows the following. Assume κ is a singular cardinal of uncountable cofinality γ and $\langle \kappa_{\xi} | \xi < \gamma \rangle$ is a normal sequence of cardinals converging to κ such that for every $\xi < \gamma$ we have $2^{\kappa_{\xi}} = 1$

- κ_{ξ}^+ . Assume further that \mathcal{F} is an almost disjoint system of functions with domain γ such that for every $f \in \mathcal{F}$ there is a stationary set $S \subseteq \gamma$ such that for every $\xi \in S$ we have $f(\xi) < \kappa_{\xi}$. Then $\operatorname{card}(\mathcal{F}) \leq \kappa$.
- **14.** Let κ be regular. Prove that there is an almost disjoint system of functions $f: \kappa \to \kappa$ of size κ^+ .
- **Hint.** Construct a sequence $\langle f_{\xi} | \xi < \kappa^{+} \rangle$ by recrusion on ξ . Use a diagonal argument to move forward.
- **15.** Prove that there is an almost disjoint family of functions $f:\omega\to\omega$ of size 2^ω . Prove also that the analogous conclusion holds for inaccessible cardinals κ in place of ω .
 - **Hint.** Look at characteristic functions of subsets of ω .
- **16.** Amend Exercises 14 and 15 in that you construct families of almost disjoint sets. Given a cardinal κ we say that sets $X, Y \subseteq \kappa$ are almost disjoint iff $X \cap Y$ is bounded in κ .
 - (a) Show that if κ is regular then there is a family of κ^+ many almost disjoint subsets of κ .
 - (b) Show that there is a family of 2^{ω} many almost disjoint subsets of ω . Similarly, if κ is strongly inaccessible then there is a family of 2^{κ} many almost disjoint subsets of κ .
- **Hint.** In (a) proceed by induction similarly as in Exercise 14. In (b) use the result of Exercise 15 and a suitable bijection between κ and the set of $\{0,1\}$ -functions with domain strictly shorter than κ . (Here you utilize the inaccessibility of κ .)