1. If \(U \) is a normal measure on \(\kappa \) w.r.t./over \(M = \mathbb{ZFC}^- \), say \(M = J_\kappa \), then \(\kappa \) is well-founded part of \(\text{ult}(M, U) \). We are not assuming \(U \in M \).

2. \(U \) is weakly amenable w.r.t. \(M \) iff
 a) If \(f: \kappa \to \mathcal{P}(\kappa) \) and \(f \in M \)
 then \(\exists \xi < \kappa \mid f(\xi) \cap U \in M \).
 b) \(\mathcal{P}(\kappa) \cap M = \mathcal{P}(\kappa) \cap \text{ult}(M, U) \).

3. \(U \) is weakly amenable w.r.t. \(M \) then \(\kappa \) is weakly compact in \(M \), and
 \(\exists \alpha < \kappa \mid \alpha \text{ weakly compact in } M_\alpha \cap U \).

4. \(M, M' \) transitive, arbitrary.
 \(\sigma: M \to M' \) \(\Sigma_0 \)-preserving and cofinal
 a) \(\sigma \) is \(\Sigma_1 \)-preserving
 b) Let \(A \in M \) s.t. \((M, A) \) is amenable, i.e.
 \(x \cap A \in M \) all \(x \in M \).
 Let \(A' = \bigcup \{ \sigma(A \setminus x) \mid x \in M \} \).
 Then \((M', A') \) is amenable and
 \(\sigma: (M, A) \to (M', A') \) is \(\Sigma_0 \)-preserving
 w.r.t. language \(\exists \in A' \).
5. Let (M, A) be amenable, U be an ultrafilter over M, and $\text{Ult}((M, A), U)$ well-founded, say $(M', A') = \text{Ult}((M, A), U)$. Then A' is as in (4).

6. If $M = \langle J_c, U \rangle$ is a premouse and $\langle M_i : i < \lambda \rangle$ is an iteration then the ultrapower maps are
 - fully elementary in the language \mathcal{L}.
 - Σ_0-preserving in the language \mathcal{L}, U.
 - cofinal, hence
 Σ_1-preserving in the language \mathcal{L}, U.

7. "Shift" Lemma:
 (Successor step in the copying construction)
 Let $\sigma: \overline{M} \to M$ be Σ_0-preserving, $\sigma(\overline{\kappa}) = \kappa$, \overline{U} a normal measure over \overline{M} on $\overline{\kappa}$, U a normal measure over M on κ. s.t. $x \in \overline{U} \implies \sigma(x) \in U$. Let
 $M' = \text{Ult}(M, U)$ and $\overline{M}' = \text{Ult}(\overline{M}, \overline{U})$.
Then there is a unique \(\Sigma_0 \)-preserving map \(\sigma' : \overline{M} \to M' \) s.t.

- \(\sigma'(\overline{\kappa}) = \kappa \)
- The diagram

\[
\begin{array}{ccc}
M & \xrightarrow{\pi} & M' \\
\uparrow \sigma & & \uparrow \sigma' \\
\overline{M} & \xrightarrow{\pi} & \overline{M}'
\end{array}
\]

commutes.

The map is defined by

\[
\sigma'(\pi(f)(\overline{\kappa})) = \pi \circ \sigma(f)(\kappa)
\]

In fact:

\[
\sigma '\upharpoonright \overline{\kappa} + M = \sigma \upharpoonright \overline{\kappa} + M
\]

8. Use the shift lemma to complete the proof of the copying construction.

Find an example of \(J_\kappa \) and a normal measure (in ZFC) \(U \) over \(J_\kappa \) s.t. \(U \) on \(\kappa \), \(J_\kappa \models \text{ZFC}^- + \kappa^+ \) exists such that \(J_\kappa \) can see \(\mathcal{P}(\kappa) \) as an element and s.t. \(\text{Ult}(J_\kappa, U) \) well-founded, but \(U \) not weakly amenable over \(J_\kappa \).
9. If $\mathcal{T} = (\kappa^+)^J_{\alpha^*}$ then $J_{\mathcal{T}} \models \text{ZFC}$.

10. If $\mathcal{T} = (\kappa^+)^J_{\alpha^*}$ and $f: \kappa \to \gamma$ is a surjection then there is $a \in \kappa$ that codes a well-ordering of order-type γ.

Easier: $a \in \kappa \times \kappa$ s.t. a is a well-ordering of order-type γ.

11. If $\mathcal{T} = (\kappa^+)^J_{\alpha^*}$, $a \in J_{\alpha^*}$ and $a \in \kappa$ then $a \in J_{\mathcal{T}}$ (like the proof of GCH).

12. $p \in R_{\alpha^*} \Rightarrow p \in P_{\alpha^*}$

(diagonalization argument.)

13. P_{α^*} is a Σ_1-cardinal over J_{α^*}.

14. If κ is a cardinal in J_{α^*} then $(H_\kappa)^{J_{\alpha^*}} = J_{\kappa}$.

15. $<^* \text{ is a well-ordering on } [\Omega]^\omega_{\omega}$.

16. Try to check the details about $B_{\mathcal{T}}$.
17. Prove B_t is closed and
 $\bar{e} \in B_t \Rightarrow B_{\bar{e}} = B_t \cap \bar{e}$.

18. Try to prove the claim:
 $t^* \leq \bar{e}$ in $B_t \Rightarrow S_{t^*} < S_{\bar{e}}$.