The function f is a bijection if and only if f is a isomorphism.

In particular, f is a bijection if and only if f is a homeomorphism.

For the function f to be a bijection, it must be surjective and injective.

1. Assume f is a bijection in M.
2. Then f is an isomorphism.
3. Let $S = \{1, 2, 3\}$ and $\phi : S \to \mathbb{Z}/3\mathbb{Z}$ be defined by $\phi(1) = 1, \phi(2) = 2, \phi(3) = 0$.
4. Prove that ϕ is well-defined.
5. Assume $S \to \mathbb{Z}/3\mathbb{Z}$ is a bijection.
6. Then ϕ is a bijection.
7. Prove that f is a homeomorphism on a closed set.
8. Prove by induction on a closed set T.
10. The function f is a bijection in M.

11. Let $f : M \to \mathbb{Z}/3\mathbb{Z}$ be defined by $f(x) = x \mod 3$.
12. Show that f is a bijection.