

Codes from Polynomials over Finite Fields

Nathan Kaplan

University of California, Irvine
Colorado State Colloquium

February 8, 2021

I. Some Questions

Let \mathbb{F}_q be a finite field of size q .

Question

- ① *What is the maximum number of points in $\mathbb{P}^2(\mathbb{F}_q)$ such that no three points lie on a line?*
- ② *What is the maximum n such that there exists a $3 \times n$ matrix with entries in \mathbb{F}_q such that no 3×3 submatrix has determinant 0?*
- ③ *What is the maximum number of points in $\mathbb{P}^{k-1}(\mathbb{F}_q)$ such that no k points lie in a hyperplane?*
- ④ *What is the maximum n such that there exists a $k \times n$ matrix with entries in \mathbb{F}_q such that no $k \times k$ submatrix has determinant 0?*

Main Conjecture for MDS Codes/MDS Conjecture

Question

- ① *What is the maximum number of \mathbb{F}_q -points of a smooth cubic surface defined over \mathbb{F}_q ?*
- ② *A homogeneous cubic $f_3(w, x, y, z)$ is defined by 20 coefficients:*

$$f_3(w, x, y, z) = a_0 w^3 + a_1 w^2 x + \cdots + a_{19} z^3.$$

How many of these q^{20} polynomials define a smooth cubic surface with this maximum number of \mathbb{F}_q -points?

- ③ *What about other numbers of \mathbb{F}_q -points?*

Questions III: Intersections of Cubic Curves

A homogeneous cubic polynomial in x, y, z is defined by 10 coefficients:

$$f_3(x, y, z) = a_0x^3 + a_1x^2y + \cdots + a_9z^3.$$

Question

How many of the q^{20} **pairs** of homogeneous cubic polynomials $f_3(x, y, z), g_3(x, y, z)$ do not share a common factor and have exactly 9 common \mathbb{F}_q -rational zeros?

- A cubic surface defined over \mathbb{F}_q has 27 lines, but these lines are not necessarily defined over \mathbb{F}_q .

Theorem

The number of homogeneous cubic polynomials $f_3(w, x, y, z)$ such that $\{f_3 = 0\}$ is a smooth cubic surface with $q^2 + 7q + 1$ \mathbb{F}_q -points, the maximum possible, is

$$\frac{|\mathrm{GL}_4(\mathbb{F}_q)|(q-2)(q-3)(q-5)^2}{51840}.$$

- Three very different approaches: [Betten-Karaoglu](#), [Das](#), [Elkies](#).

Theorem (K.-Matei)

The number of pairs of homogeneous cubic polynomials $f_3(x, y, z)$, $g_3(x, y, z)$ that do not have a common irreducible factor over $\overline{\mathbb{F}_q}$ and have exactly 9 common zeros in $\mathbb{P}^2(\mathbb{F}_q)$ is

$$\frac{1}{9!} (q-2)(q+1)^2(q-1)^4 q^5 (q^2+q+1) \cdot \\ (q^6 + 2q^5 - 73q^4 + 344q^3 - 838q^2 + 1754q - 2030).$$

- There are similar (more complicated) polynomial formulas for each number of common zeros between 0 and 9.

II. Coding Theory Basics

Let \mathbb{F}_q be a finite field of size q .

Definition

- A **code** over \mathbb{F}_q of length n is a subset $C \subseteq \mathbb{F}_q^n$.
- C is a **linear code** if it is a linear subspace of \mathbb{F}_q^n .
That is, if $c_1, c_2 \in C$ then $c_1 + c_2 \in C$ and $\alpha c_1 \in C$ for any $\alpha \in \mathbb{F}_q$.
- For $\begin{matrix} x=(x_1, \dots, x_n) \\ y=(y_1, \dots, y_n) \end{matrix} \in \mathbb{F}_q^n$, the **Hamming distance** between x and y is

$$d(x, y) = \#\{i \mid x_i \neq y_i\}.$$

- The **Hamming weight** of x is $\text{wt}(x) = d(x, \mathbf{0}) = \#\{i \mid x_i \neq 0\}$.
- The **minimum distance** of a code C is

$$d(C) = \min_{\substack{x, y \in C \\ x \neq y}} d(x, y).$$

- If C is linear, $d(C)$ is the minimum weight of a nonzero $c \in C$.

Main Problem in Combinatorial Coding Theory

The most interesting codes $C \subseteq \mathbb{F}_q^n$ have **large size** and **large minimum distance**.

Definition

Let $A_q(n, d)$ be the maximum size of a code $C \subseteq \mathbb{F}_q^n$ that has minimum distance at least d .

Main Problem in Combinatorial Coding Theory:

Compute values of $A_q(n, d)$.

On the Size of Optimal Three-Error-Correcting Binary Codes of Length 16

Patric R. J. Östergård

Abstract—Let $A(n, d)$ denote the maximum size of a binary code with length n and minimum distance d . It has been known for decades that $A(16, 7) = A(17, 8) = 36$ or 37 , that is, that the size of optimal 3-error-correcting binary codes of length 16 is either 36 or 37 . By a recursive classification via subcodes and a clique search in the final stage, it is shown that the size of optimal such codes is 36 .

attaining the lower bound have been constructed in [13], [14] (see also [10, pp. 57,58]) and the upper bound is from [3]. The problem of determining this particular value is also mentioned in [8, Research Problem 7.18]. The main result of this work is that the best known lower bound is the exact value: $A(17, 8) = 36$.

Proposition (Singleton Bound)

$$A_q(n, d) \leq q^{n-(d-1)}$$

Proof.

- ① Let $C \subseteq \mathbb{F}_q^n$ have $|C| = A_q(n, d)$ and $d(C) \geq d$.
- ② Write down all the $A_q(n, d)$ codewords.
- ③ Choose any $d - 1$ coordinates and erase them.
- ④ Get $A_q(n, d)$ **distinct** elements of $\mathbb{F}_q^{n-(d-1)}$.

Definition

A code for which equality holds, $|C| = q^{n-(d-1)}$ is called **Maximum Distance Separable** or **MDS**.

III. Reed-Solomon Codes

Let p_1, p_2, \dots, p_q be an ordering of the elements of \mathbb{F}_q .

Let V_d be the vector space of **polynomials in $\mathbb{F}_q[x]$ of degree at most d** .

Definition

The **evaluation map** is defined by

$$\begin{aligned} \text{ev}: \quad V_d &\hookrightarrow \mathbb{F}_q^q \\ \text{ev}(f) &= (f(p_1), \dots, f(p_q)) \in \mathbb{F}_q^q. \end{aligned}$$

- $\text{ev}(f + g) = \text{ev}(f) + \text{ev}(g)$ and $\text{ev}(\alpha f) = \alpha \text{ev}(f)$.
The image $\text{ev}(V_d) \subseteq \mathbb{F}_q^q$ is a linear code.

It is the **Reed-Solomon code of length q and order d** , $\text{RS}(q, d)$.

- As long as there is no nonzero polynomial vanishing at every element of \mathbb{F}_q , this map is injective, and $\dim(\text{RS}(q, d)) = \dim(V_d) = d + 1$.

$x^q - x$ vanishes at every element of \mathbb{F}_q , so suppose $q > d$.

Proposition

Let F be a field.

A nonzero $f \in F[x]$ with $\deg(f) = d$ has at most d distinct roots in F .

- Suppose $f, g \in \mathbb{F}_q[x]$ each have degree at most d .
Then $f - g$ is either 0 or has at most d roots in \mathbb{F}_q .
- Conclude that $d(\text{RS}(q, d)) = q - d$.
- $|\text{RS}(q, d)| = q^{d+1} = q^{q - (d(\text{RS}(q, d)) - 1)}$.
- Therefore, $\text{RS}(q, d)$ is an MDS code.

Definition

Let $M(k, q)$ be the maximum n such that a k -dimensional linear MDS code $C \subseteq \mathbb{F}_q^n$ exists.

Conjecture (Main Conjecture for MDS Codes)

- ① If $q \leq k$, $M(k, q) = k + 1$. (Easy: Suppose now that $q > k$.)
- ② If q is even and $k = 3$ or $k = q - 1$, then $M(k, q) = q + 2$.
- ③ Otherwise, $M(k, q) = q + 1$.

Reed-Solomon Example: For $q > d$, $M(d + 1, q) \geq q$.

Projective Space over a Finite Field

Points of projective space are equivalence classes of affine points, where two points are equivalent if one is a scalar multiple of the other.

Definition

The **projective space** of dimension $n - 1$ over a finite field \mathbb{F}_q is

$$\mathbb{P}^{n-1}(\mathbb{F}_q) = \{(x_1, \dots, x_n) \in \mathbb{F}_q^n \setminus (0, \dots, 0) \text{ where } (x_1, \dots, x_n) \sim (\alpha x_1, \dots, \alpha x_n) \text{ for any } \alpha \in \mathbb{F}_q^*\}.$$

Example

- ① $\mathbb{P}^1(\mathbb{F}_q)$ has $q + 1$ points, $[1 : a]$ where $a \in \mathbb{F}_q$ and $[0 : 1]$.
- ② $\mathbb{P}^2(\mathbb{F}_q)$ has $q^2 + q + 1$ points,

$$[1 : a : b], [0 : 1 : c], [0 : 0 : 1]$$

where $a, b, c \in \mathbb{F}_q$.

MDS Example: Projective Reed-Solomon Codes

Let V_d be the vector space of homogeneous polynomials in x, y of degree d .

Let $p'_1, p'_2, \dots, p'_{q+1}$ be affine representatives for the points of $\mathbb{P}^1(\mathbb{F}_q)$.

Example: $(1, a), (0, 1)$ where $a \in \mathbb{F}_q$.

Definition

The *evaluation map* is defined by

$$\begin{aligned} \text{ev}: \quad V_d &\mapsto \mathbb{F}_q^{q+1} \\ \text{ev}(f) = &\quad (f(p'_1), \dots, f(p'_{q+1})) \in \mathbb{F}_q^{q+1} \end{aligned}$$

- If $d < q$, this map is injective.

In this case, $\text{ev}(V_d)$ is a $(d + 1)$ -dimensional linear subspace of \mathbb{F}_q^{q+1} , the Projective Reed-Solomon code $C_{1,d}$.

- This is an MDS code.

Linear forms on \mathbb{P}^1 that agree at too many points are equal.

Definition

Let $M(k, q)$ be the maximum n such that a k -dimensional linear MDS code $C \subseteq \mathbb{F}_q^n$ exists.

Conjecture (Main Conjecture for MDS Codes)

- ① If $q \leq k$, $M(k, q) = k + 1$. (Easy: Suppose now that $q > k$.)
- ② If q is even and $k = 3$ or $k = q - 1$, then $M(k, q) = q + 2$.
- ③ Otherwise, $M(k, q) = q + 1$.

Projective Reed-Solomon Example: For $q > d$, $M(d + 1, q) \geq q + 1$.

Question

When does there exist a longer k -dimensional MDS code defined over \mathbb{F}_q than the one that comes from a Projective Reed-Solomon code?

- A k -dimensional linear code $C \subset \mathbb{F}_q^n$ is the row span of a $k \times n$ generator matrix G .
- Let $q = 5$, $d = 2$. $C_{1,2}$ is the row span of

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 3 & 4 & 0 \\ 0 & 1 & 4 & 4 & 1 & 1 \end{pmatrix}$$

- $C_{1,d}$ has minimum distance $q + 1 - d = 4$.
- No nonzero linear combination of rows has 0s in 3 or more coordinates.
- No 3×3 submatrix has determinant 0.

- ① Let G be a $k \times n$ generator matrix for the k -dimensional code $C \subseteq \mathbb{F}_q^n$.
- ② C is an MDS code if and only if every nonzero linear combination of the rows of G has at most $k - 1$ coordinates equal to 0.
- ③ Equivalently, no $k \times k$ submatrix of G has determinant 0.
- $M(k, q)$ is the maximum n such that a k -dimensional linear MDS code $C \subset \mathbb{F}_q^n$ exists.
- $M(k, q)$ is the maximum n for which there exists a $k \times n$ matrix with entries in \mathbb{F}_q such that **none of its $\binom{n}{k}$ $k \times k$ submatrices have determinant 0**.

- A **nonzero column** of a $k \times n$ matrix with entries in \mathbb{F}_q gives a point in $\mathbb{P}^{k-1}(\mathbb{F}_q)$.
- k points lie in a **hyperplane** exactly when the corresponding $k \times k$ matrix has determinant 0.
- $M(k, q)$ is the **maximum number of points** in $\mathbb{P}^{k-1}(\mathbb{F}_q)$ such that no k of them lie in a hyperplane.

Example

Let $q = 5$, $d = 2$. $C_{1,2}$ is the row span of

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 3 & 4 & 0 \\ 0 & 1 & 4 & 4 & 1 & 1 \end{pmatrix}$$

This gives 6 points in $\mathbb{P}^2(\mathbb{F}_5)$:

$$[1 : 0 : 0], [1 : 1 : 1], [1 : 2 : 4], [1 : 3 : 4], [1 : 4 : 1], [0 : 0 : 1].$$

No three of these points lie on a line.

Idea: A **smooth conic** has $q + 1$ \mathbb{F}_q -points, no three lie on a line.

Theorem (Segre)

- ① If q is odd, $M(3, q) = q + 1$.

In fact, every collection of $q + 1$ points with no three in a line is the set of rational points of a **smooth conic**.

- ② If q is even, $M(3, q) = q + 2$.

(The classification of these **hyperovals** is not known.)

Definition. A curve X in \mathbf{P}^n is *strange* if there is a point A which lies on all the tangent lines of X .

311

Example 3.8.2. A conic in \mathbf{P}^2 over a field of characteristic 2 is strange. For example, consider the conic $y = x^2$. Then $dy/dx \equiv 0$, so all the tangent lines are horizontal, so they all pass through the point at infinity on the x -axis.

Higher Dimensions

The $q + 1$ points in $\mathbb{P}^k(\mathbb{F}_q)$ corresponding to the Projective Reed-Solomon code $C_{1,k}$ are the \mathbb{F}_q -points of a **rational normal curve**.

Example: Image of the map $\nu_k: \mathbb{P}^1(\mathbb{F}_q) \rightarrow \mathbb{P}^k(\mathbb{F}_q)$

$$[x : y] \rightarrow [x^k : x^{k-1}y : \cdots : xy^{k-1} : y^k].$$

Theorem (Segre)

If q is odd, $M(4, q) = q + 1$.

In fact, every collection of $q + 1$ points in $\mathbb{P}^3(\mathbb{F}_q)$ with no 4 in a plane is the set of rational points of a **twisted cubic curve**.

Theorem

If q is odd, $M(5, q) = q + 1$.

Glynn's 10-Arc: 10 points in $\mathbb{P}^4(\mathbb{F}_9)$ with no 5 in a hyperplane, but they **do not lie on a rational normal curve**.

One of Nathan's Favorite Problems!

Question

What is the maximum number of points in $\mathbb{P}^2(\mathbb{F}_q)$ with no 4 on a line?

- A smooth plane cubic curve has no four points on a line.
Can find one with at least $q + \lfloor 2\sqrt{q} \rfloor$ \mathbb{F}_q -points.
- Best upper bound: $2q$.
- Blokhuis offered a prize of 10,000 Hungarian forints to give an improvement in either direction:
 - ▶ Construction of $(1 + \epsilon)q$ for infinitely many q ,
 - ▶ Or, upper bound $(2 - \epsilon)q$ that holds for infinitely many q .

Note: This prize is $\approx \$35$.

IV. Projective Reed-Muller Codes

More Variables: Projective Reed-Muller Codes

Definition

- Let $N = |\mathbb{P}^n(\mathbb{F}_q)| = \frac{q^{n+1}-1}{q-1}$.
 - Choose an ordering of the points of $\mathbb{P}^n(\mathbb{F}_q)$: p_1, \dots, p_N .
 - Choose an affine representative for each projective point: p'_1, \dots, p'_N .
- Let $V_{n,d}$ be the $\binom{n+d}{d}$ -dimensional vector space of **homogeneous polynomials in x_0, x_1, \dots, x_n of degree d** .
- The **evaluation map** is defined by

$$\text{ev}: \quad V_{n,d} \quad \mapsto \quad \mathbb{F}_q^N$$

$$\text{ev}(f) = \quad (f(p'_1), \dots, f(p'_N)) \in \mathbb{F}_q^N$$

- If $d \leq q$, this map is injective.
Image is the **Projective Reed-Muller code $C_{n,d}$** .

Question

- ① *What is the **minimum distance** of $C_{n,d}$?*
- ② *What is the **maximum number of \mathbb{F}_q -points of a degree d hypersurface in \mathbb{P}^n ?***

Idea [Serre]: Take the union of d hyperplanes through a common $n - 2$ dimensional linear subspace.

For $n > 1$, the Projective Reed-Muller code $C_{n,d}$ is far from being MDS.

The Hamming Weight Enumerator of a Code

Definition

The *Hamming weight enumerator* of $C \subseteq \mathbb{F}_q^n$ is

$$W_C(X, Y) = \sum_{c \in C} X^{n-\text{wt}(c)} Y^{\text{wt}(c)} = \sum_{i=0}^n A_i \cdot X^{n-i} Y^i,$$

where

$$A_i = \#\{c \in C \mid \text{wt}(c) = i\}.$$

Example

For $C = \{(0, 0, 0), (1, 1, 1)\} \subset \mathbb{F}_2^3$, $W_C(X, Y) = X^3 + Y^3$.

Question

- What is the weight enumerator of $C_{1,d}$?
- How many $f \in \mathbb{F}_q[x]$ of degree at most d have exactly m distinct roots in \mathbb{F}_q ?

Fact: The weight enumerator of a k -dimensional MDS code $C \subseteq \mathbb{F}_q^n$ is determined by k and n .

A homogeneous cubic $f_3(w, x, y, z)$ is defined by 20 coefficients:

$$f_3(w, x, y, z) = a_0 w^3 + a_1 w^2 x + \cdots + a_{19} z^3.$$

Problem

- ① How many of the q^{20} homogeneous cubic polynomials $f_3(w, x, y, z)$ have exactly k zeros?
- ② How many elements of $C_{3,3} \subset \mathbb{F}_q^{q^3+q^2+q+1}$ have exactly k coordinates equal to zero?
- ③ What is the $A_{q^3+q^2+q+1-k}$ coefficient of $W_{C_{3,3}}(X, Y)$?

Projective Reed-Muller Codes: Examples

Example ($C_{n,1}$: Linear Forms on \mathbb{P}^n)

If $f(x_0, \dots, x_n)$ is not zero, it defines a hyperplane with $\frac{q^n - 1}{q - 1}$ \mathbb{F}_q -points.

$$W_{C_{n,1}}(X, Y) = X^{\frac{q^{n+1} - 1}{q - 1}} + (q^{n+1} - 1)X^{\frac{q^n - 1}{q - 1}}Y^{q^n}.$$

- We know $W_{C_{1,d}}(X, Y)$ and $W_{C_{n,2}}(X, Y)$.

Example ($C_{2,2}$ Plane Conics)

$(q - 1)(q^5 - q^2)$ polynomials $f_2(x, y, z)$ define a smooth conic.
All are projectively equivalent and have $q + 1$ \mathbb{F}_q -points.

Some are singular:

Reducible Curve	# Polynomials	# \mathbb{F}_q -points
Pair of Rational Lines	$(q - 1)(\frac{q^2 + q + 1}{2})$	$2q + 1$
Pair of Galois-conjugate Lines	$(q - 1)(\frac{q^4 - q}{2})$	1
Double Line	$(q - 1)(q^2 + q + 1)$	$q + 1$

- Reducible Cubics.
- Irreducible, Singular Cubics.
- Smooth Cubics.

A smooth cubic curve with an \mathbb{F}_q -rational point defines an elliptic curve.

Question

How many isomorphism classes of elliptic curves E/\mathbb{F}_q have

$$\#E(\mathbb{F}_q) = q + 1 - t?$$

Hasse's Theorem: 0 unless $|t| \leq 2\sqrt{q}$.

Deuring, Waterhouse: Answer involves class numbers of imaginary quadratic fields.

Question

Given an isomorphism class E/\mathbb{F}_q , how many smooth plane cubic curves C defined over \mathbb{F}_q give an elliptic curve isomorphic to E ?

Putting this together gives $W_{C_{2,3}}(X, Y)$.

- Reducible Cubics: (Three planes, etc.)
- Cone over a Plane Cubic.
- Everything Else.

Theorem (Weil)

An irreducible cubic surface S that is not a cone over a plane cubic has

$$\#S(\mathbb{F}_q) = q^2 + tq + 1,$$

where $t \in [-2, 7]$.

We know $W_{C_{3,3}}(X, Y)$ except for 10 coefficients:

$$A_{q^3-6q}, A_{q^3-5q}, \dots, A_{q^3+3q}.$$

IV. The Dual of a Linear Code and the MacWilliams Identity

The Dual Code of a Linear Code

Definition

① For $\begin{matrix} x = (x_1, \dots, x_N) \\ y = (y_1, \dots, y_N) \end{matrix} \in \mathbb{F}_q^N$ let $\langle x, y \rangle = \sum_{i=1}^N x_i y_i$.

② For a linear code $C \subseteq \mathbb{F}_q^N$, the **dual code** is defined by

$$C^\perp = \left\{ y \in \mathbb{F}_q^N \mid \langle x, y \rangle = 0, \forall x \in C \right\}.$$

Example

Let $C = \{(0, \dots, 0), (1, \dots, 1)\} \subset \mathbb{F}_2^n$.

Then $C^\perp = \{y \in \mathbb{F}_2^n \mid \text{wt}(y) \text{ is even}\}$.

We see that

$$W_C(X, Y) = X^n + Y^n,$$

and

$$W_{C^\perp}(X, Y) = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{2i} X^{n-2i} Y^{2i} = \frac{(X+Y)^n + (X-Y)^n}{2}.$$

Theorem (MacWilliams)

For a linear code $C \subseteq \mathbb{F}_q^N$

$$W_{C^\perp}(X, Y) = \frac{1}{|C|} W_C(X + (q-1)Y, X - Y).$$

Example ($C_{2,1}$: Linear Forms on \mathbb{P}^2)

$$\begin{aligned} W_{C_{2,1}^\perp}(X, Y) &= \frac{1}{q^3} W_{C_{2,1}}(X + (q-1)Y, X - Y) \\ &= X^{q^2+q+1} + \frac{(q^3-1)(q^3-q)}{6} X^{q^2+q-2} Y^3 + \dots \end{aligned}$$

Example ($C_{2,1}$:Linear Forms on \mathbb{P}^2)

$C_{2,1}^\perp$ has no codewords of weight 1 or 2. Number of **weight 3** codewords:

$$(q-1)(q^2+q+1)\binom{q+1}{3}.$$

This is $(q-1)$ times the **number of collinear triples** in $\mathbb{P}^2(\mathbb{F}_q)$.

A weight 3 dual codeword with nonzero entries a_i, a_j, a_k satisfies

$$a_i f_1(p_i) + a_j f_1(p_j) + a_k f_1(p_k) = 0$$

for all linear forms f_1 .

If $f_1(p_i) = f_1(p_j) = 0$, then $f_1(p_k) = 0$. So $\{p_i, p_j, p_k\}$ must be collinear.

Interpolation Problems:

Dual codewords come from collections of points that fail to impose independent conditions on degree d curves in \mathbb{P}^2 .

p_1, \dots, p_N fail to impose independent conditions on degree d hypersurfaces in \mathbb{P}^n if the dimension of the space of hypersurfaces containing them exceeds what it would be for generically chosen points.

Example: Three generic points in \mathbb{P}^2 are not contained in any lines, but if the three points are collinear then there is a line containing them.

Theorem (Chasles)

Let $X_1, X_2 \subset \mathbb{P}^2$ be cubic plane curves meeting in nine points p_1, \dots, p_9 . If $X \subset \mathbb{P}^2$ is any cubic containing p_1, \dots, p_8 , then X contains p_9 as well.

Let $N = \frac{q^4 - 1}{q - 1} = |\mathbb{P}^3(\mathbb{F}_q)|$.

- ① Determine $W_{C_{3,3}}(X, Y)$ up to 10 unknown coefficients.
- ② Let

$$W_{C_{3,3}^\perp}(X, Y) = \sum_{i=0}^N B_i X^{n-i} Y^i.$$

By the MacWilliams identity, each B_j gives a linear relation satisfied by the unknown A_i coefficients.

Determine B_0, B_1, \dots, B_9 and conclude with linear algebra.

Theorem

The number of homogeneous cubic polynomials $f_3(w, x, y, z)$ such that $\{f_3 = 0\}$ is a smooth cubic surface with $q^2 + 7q + 1$ \mathbb{F}_q -points, the maximum possible, is

$$\frac{|\mathrm{GL}_4(\mathbb{F}_q)|(q-2)(q-3)(q-5)^2}{51840}.$$

Question

How many of the q^{20} **pairs** of homogeneous cubic polynomials $f_3(x, y, z), g_3(x, y, z)$ have **exactly k common zeros**?

- Question about a **Second Hamming Weight Enumerator**.
- **Bézout's Theorem:** Two cubic curves that intersect in more than 9 points must share a common component.
- Determine the Second Hamming Weight Enumerator up to 10 unknown coefficients.

Theorem (Entin)

As $q \rightarrow \infty$, the probability that a degree e polynomial in x, y, z and a degree d polynomial in x, y, z have **exactly k common zeros** approaches the proportion of $\sigma \in S_{d \cdot e}$ with **exactly k fixed points**.

Coding theory approach can give exact formulas for low-degree curves.

Theorem (K.-Matei)

The number of pairs of homogeneous cubic polynomials

$f_3(x, y, z), g_3(x, y, z)$ *that do not have a common irreducible factor over* \mathbb{F}_q *and have exactly 9 common zeros in* $\mathbb{P}^2(\mathbb{F}_q)$ *is*

$$\frac{1}{9!} (q-2)(q+1)^2(q-1)^4q^5(q^2+q+1) \cdot \\ (q^6+2q^5-73q^4+344q^3-838q^2+1754q-2030).$$

- There are similar (more complicated) polynomial formulas for each number of common zeros between 0 and 9.