Counting Subrings of \mathbb{Z}^n

Nathan Kaplan

University of California, Irvine New York Number Theory Seminar

January 28, 2021

I. Main Questions

Some Definitions

Definition

• A sublattice $\Lambda \subseteq \mathbb{Z}^n$ is a finite index subgroup of \mathbb{Z}^n .

• Let
$$v = (v_1, ..., v_n), w = (w_1, ..., w_n) \in \mathbb{Z}^n$$
. Define $v \circ w = (v_1 w_1, ..., v_n w_n)$.

- A sublattice Λ ⊆ Zⁿ is a multiplicative sublattice if v, w ∈ Λ implies v ∘ w ∈ Λ.
- A subring $R \subseteq \mathbb{Z}^n$ is a multiplicatively closed sublattice that contains (1, 1, ..., 1).
- Let $a_k(\mathbb{Z}^n)$ be the number of sublattices $\Lambda \subseteq \mathbb{Z}^n$ with $[\mathbb{Z}^n \colon \Lambda] = k$.
- Let $f_n(k)$ be the number of subrings $R \subseteq \mathbb{Z}^n$ with $[\mathbb{Z}^n : R] = k$.

• It is not difficult to show that the number of subrings of \mathbb{Z}^{n+1} of index k equals the number of multiplicative sublattices of \mathbb{Z}^n of index k.

Kaplan (UCI)

Counting Subrings of Zⁿ

Main Questions

Question

) Can we give a formula for
$$a_k(\mathbb{Z}^n)$$
?

2 Let

$$N_n(X) = \#\{\text{sublattices of } \mathbb{Z}^n \text{ of index } \leq X\} = \sum_{k \leq X} a_k(\mathbb{Z}^n).$$

Can we give an asymptotic formula for $N_n(X)$ as $X \to \infty$?

Question

$$N_n^R(X) = \#\{\text{subrings of } \mathbb{Z}^n \text{ of index } \leq X\} = \sum_{k \leq X} f_n(k).$$

Can we give an asymptotic formula for $N_n^R(X)$ as $X \to \infty$?

Counting Sublattices

- Every finite index subgroup of \mathbb{Z} is $k\mathbb{Z}$ for some positive integer k.
- $a_k(\mathbb{Z}) = 1$ for each $k \ge 1$.
- $N_1(X) = \lfloor X \rfloor$.

Theorem
For
$$n \ge 2$$
,
 $N_n(X) = \#\{\text{sublattices of } \mathbb{Z}^n \text{ of index } \le X\}$
 $= \frac{\zeta(n)\zeta(n-1)\cdots\zeta(2)}{n}X^n + O(X^{n-1}\log(X)).$

Example

$$N_2(X) \sim rac{\pi^2}{12} X^2.$$

Counting Subrings

Theorem (Datskovsky-Wright 3, Nakagawa 4, K.-Marcinek-Takloo-Bighash \geq 5)

● For $n \in \{2, 3, 4, 5\}$ there exists a $C_n > 0$ such that

$$N_n^R(X) \sim C_n X(\log X)^{\binom{n}{2}-1}.$$

2 Suppose $n \ge 6$. For any $\epsilon > 0$ we have

$$X(\log X)^{\binom{n}{2}-1} \ll N_n^R(X) \ll_{\epsilon} X^{\frac{n}{2}-\frac{7}{6}+\epsilon}$$

Theorem (Isham)

Fix n > 1 and let

$$a(n) = \max_{0 \le d \le n-1} \left(\frac{d(n-1-d)}{n-1+d} + \frac{1}{n-1+d} \right)$$

Then $X^{a(n)} \ll N_n^R(X)$.

 \circ As $n \to \infty$, $a(n) \approx .17n$.

• This result builds on work of Brakenhoff.

II. Counting Sublattices

Counting Matrices in Hermite Normal Form

 \circ Every sublattice of \mathbb{Z}^n is the column span of a unique matrix in Hermite normal form.

 \circ The index of the sublattice is the determinant of the matrix.

Definition

An $n \times n$ integer matrix A is in Hermite normal form if:

A is upper triangular, and

2 $0 \le a_{ij} < a_{ii}$ for $1 \le i < j \le n$.

$$\left(egin{array}{cccc} 1 & 2 & 0 \ -3 & 3 & 0 \ 2 & 0 & 1 \end{array}
ight)
ightarrow \left(egin{array}{cccc} 3 & 2 & 0 \ 0 & 3 & 0 \ 0 & 0 & 1 \end{array}
ight)$$

Question

I how many n × n matrices in Hermite normal form have determinant k?

Output: Out

Kaplan (UCI)

Counting Subrings of \mathbb{Z}^4

The Zeta Function of \mathbb{Z}^n

Definition

$$\zeta_{\mathbb{Z}^n}(s) = \sum_{\substack{\Lambda \subseteq \mathbb{Z}^n \\ [\mathbb{Z}^n : \Lambda] < \infty}} [\mathbb{Z}^n : \Lambda]^{-s} = \sum_{k=1}^\infty a_k(\mathbb{Z}^n) k^{-s}.$$

Example

$$\zeta_{\mathbb{Z}}(s) = \sum_{k=1}^{\infty} [\mathbb{Z} \colon k\mathbb{Z}]^{-s} = \sum_{k=1}^{\infty} k^{-s} = \zeta(s).$$

If $gcd(k_1, k_2) = 1$ then $a_{k_1k_2}(\mathbb{Z}^n) = a_{k_1}(\mathbb{Z}^n)a_{k_2}(\mathbb{Z}^n)$. Therefore,

$$\zeta_{\mathbb{Z}^n}(s) = \prod_p \zeta_{\mathbb{Z}^n,p}(s),$$

where

$$\zeta_{\mathbb{Z}^n,p}(s) = \sum_{e=0}^{\infty} a_{p^e}(\mathbb{Z}^n)p^{-es}.$$

Matrices in Hermite Normal Form with a Given Diagonal

Example

$$\left(\begin{array}{ccc} p^a & x & y \\ 0 & p^b & z \\ 0 & 0 & p^c \end{array}\right)$$

There are p^a choices for x, p^a choices for y, and p^b choices for z.

$$\begin{split} \zeta_{\mathbb{Z}^{3},p}(s) &= \sum_{a=0}^{\infty} \sum_{b=0}^{\infty} \sum_{c=0}^{\infty} p^{2a+b} \cdot p^{-(a+b+c)s} \\ &= \left(\sum_{a=0}^{\infty} p^{a(2-s)} \right) \left(\sum_{b=0}^{\infty} p^{b(1-s)} \right) \left(\sum_{c=0}^{\infty} p^{-sc} \right) \\ &= \left(1 - p^{-(s-2)} \right)^{-1} \left(1 - p^{-(s-1)} \right)^{-1} \left(1 - p^{-s} \right)^{-1}. \end{split}$$

The Zeta Function of \mathbb{Z}^n

Theorem

$$\zeta_{\mathbb{Z}^n}(s) = \zeta(s)\zeta(s-1)\cdots\zeta(s-(n-1)).$$

- Analytic properties of $\zeta_{\mathbb{Z}^n}(s)$ give information about $N_n(X)$.
- More specifically, ζ_{Zⁿ}(s) has meromorphic continuation to the entire complex plane. Its right-most pole is at s = n. It is a simple pole.
- Calculating the residue and applying a Tauberian theorem gives

$$N_n(X) \sim \frac{\zeta(n)\zeta(n-1)\cdots\zeta(2)}{n}X^n.$$

Subgroup Growth by Lubotzky and Segal gives 5 different proofs of this result. (This one is attributed to Bushnell and Reiner.)

III. The Subring Zeta Function of \mathbb{Z}^n

When does a matrix give a multiplicatively closed sublattice?

Proposition

Let A be an $n \times n$ matrix Hermite normal form with columns v_1, \ldots, v_n . The column span Λ of A is a multiplicative sublattice of \mathbb{Z}^n if and only if $v_i \circ v_j \in \Lambda$ for all $1 \le i \le j \le n$.

Consider
$$A = \begin{pmatrix} x & y \\ 0 & z \end{pmatrix}$$
.
 $v_1 \circ v_1 = \begin{pmatrix} x^2 \\ 0 \end{pmatrix} = x \cdot v_1 + 0 \cdot v_2$.
 $v_1 \circ v_2 = \begin{pmatrix} xy \\ 0 \end{pmatrix} = y \cdot v_1 + 0 \cdot v_2$.
 $v_2 \circ v_2 = \begin{pmatrix} y^2 \\ z^2 \end{pmatrix} = \begin{pmatrix} y^2 - yz \\ 0 \end{pmatrix} + z \cdot v_2$.

The sublattice spanned by this matrix is multiplicative if and only if $x \mid (y^2 - yz)$, or equivalently, if $\frac{y^2 - yz}{x} \in \mathbb{Z}$.

The Subring Zeta Function of \mathbb{Z}^n for Small n

Definition

$$\zeta_{\mathbb{Z}^n}^{\boldsymbol{R}}(\boldsymbol{s}) = \sum_{k=1}^{\infty} f_n(k) k^{-s}.$$

As we saw with $\zeta_{\mathbb{Z}^n}(s)$, this zeta function has an Euler product

$$\zeta_{\mathbb{Z}^n}^R(s) = \prod_p \zeta_{\mathbb{Z}^n,p}^R(s), \text{ where } \zeta_{\mathbb{Z}^n,p}^R(s) = \sum_{e=0}^{\infty} f_n(p^e)p^{-es}.$$

Theorem (Datskovsky-Wright)

We have

$$egin{array}{rcl} \zeta^R_{\mathbb{Z}^2}(s) &=& \zeta(s), \ \zeta^R_{\mathbb{Z}^3}(s) &=& rac{\zeta(3s-1)\zeta(s)^3}{\zeta(2s)^2}. \end{array}$$

The Subring Zeta Function of \mathbb{Z}^n for Small n

Theorem (Nakagawa)

We have

$$\begin{split} \zeta^R_{\mathbb{Z}^4}(s) &= \prod_p \frac{1}{(1-p^{-s})^2(1-p^2p^{-4s})(1-p^3p^{-6s})} \Big(1+4p^{-s}+2p^{-2s} \\ &+(4p-3)p^{-3s}+(5p-1)p^{-4s}+(p^2-5p)p^{-5s} \\ &+(3p^2-4p)p^{-6s}-2p^2p^{-7s}-4p^2p^{-8s}-p^2p^{-9s}\Big). \end{split}$$

Theorem (Datskovsky-Wright, Nakagawa, K.-Marcinek-Takloo-Bighash) For $n \in \{2, 3, 4, 5\}$ there exists a $C_n > 0$ such that $N_n^R(X) \sim C_n X (\log X)^{\binom{n}{2}-1}.$

Idea for n = 5: Count subrings of 'small index' and show that there are not 'too many' subrings of 'large index'. Show that $\zeta_{\mathbb{Z}^5}^R(s)$ has a pole at s = 1 of order $\binom{5}{2}$ and that there are no poles to the right of s = 1.

Motivation: Counting Orders in Number Fields

Conjecture

Let $A_n(X)$ denote the number of isomorphism classes of degree n number fields K such that $|\operatorname{disc}(K)| < X$. There exists a real number $c_n > 0$ such that

 $A_n(X) \sim c_n X.$

- n = 3, Davenport-Heilbronn.
- n = 4, 5, Bhargava.

Idea: Count all orders in degree n fields then sieve for the maximal orders.

Question

Let $B_{K}(X)$ denote the number of isomorphism classes of orders \mathcal{O} contained in K such that $|\operatorname{disc}(\mathcal{O})| < X$. How does $B_{K}(X)$ grow as a function of X?

 $\circ \text{ If } \mathcal{O} \subseteq \mathcal{O}_{\mathcal{K}} \text{ is an order, then } \mathsf{disc}(\mathcal{O}) = [\mathcal{O}_{\mathcal{K}} \colon \mathcal{O}]^2 \, \mathsf{disc}(\mathcal{O}_{\mathcal{K}}).$

- Let K be a degree n number field.
- The subring zeta function $\zeta_{\mathcal{O}_{\kappa}}^{R}(s)$ has an Euler product.
- The local factor $\zeta^{R}_{\mathcal{O}_{K},p}(s)$ depends on how p decomposes in K.
- If p splits completely in K the local factor at p is $\zeta_{\mathbb{Z}^n,p}(s)$.
- Idea: Primes that split completely should contribute 'the most' orders.

Question

Does the growth rate of $N_n(X)$ determine the growth rate of $B_K(X)$?

IV. Counting Subrings of \mathbb{Z}^n of 'Small Index'

Counting Subrings of \mathbb{Z}^n of Small Index

Proposition (Liu)

For any positive integer n

$$f_{n}(1) = 1,$$

$$f_{n}(p) = \binom{n}{2},$$

$$f_{n}(p^{2}) = \binom{n}{2} + \binom{n}{3} + 3\binom{n}{4},$$

$$f_{n}(p^{3}) = \binom{n}{2} + (p+1)\binom{n}{3} + 7\binom{n}{4} + 10\binom{n}{5} + 15\binom{n}{6},$$

$$f_{n}(p^{4}) = \binom{n}{2} + (3p+1)\binom{n}{3} + (p^{2}+p+10)\binom{n}{4} + (10p+21)\binom{n}{5} + 70\binom{n}{6} + 105\binom{n}{7} + 105\binom{n}{8}.$$

• Liu also gives a formula for $f_n(p^5)$.

Counting Subrings of \mathbb{Z}^n of Small Index

Atanasov-K.-Krakoff-Menzel: Give formulas for $f_n(p^e)$ for $e \in \{6, 7, 8\}$.

$$\begin{split} f_n(p^8) &= \binom{n}{2} + (4p^2 + 4p + 1)\binom{n}{3} + (p^4 + 26p^3 + 9p^2 + p + 22)\binom{n}{4} \\ &+ (p^5 + 77p^4 - 13p^3 + 52p^2 + 161p + 61)\binom{n}{5} \\ &+ (16p^6 + 31p^5 + 22p^4 + 187p^3 + 702p^2 + 301p + 441)\binom{n}{6} \\ &+ (p^8 + p^7 + 2p^6 + 23p^5 + 339p^4 + 1080p^3 + 1206p^2 + 3074p + 1800)\binom{n}{7} \\ &+ (29p^6 + 29p^5 + 652p^4 + 1093p^3 + 9374p^2 + 9073p + 8933)\binom{n}{8} \\ &+ (36p^5 + 498p^4 + 6420p^3 + 15324p^2 + 39810p + 37201)\binom{n}{9} \\ &+ (630p^4 + 3150p^3 + 46200p^2 + 103320p + 148551)\binom{n}{10} \\ &+ (6930p^3 + 41580p^2 + 243705p + 510730)\binom{n}{11} \\ &+ (51975p^2 + 329175p + 1474165)\binom{n}{12} \\ &+ (270270p + 3258255)\binom{n}{13} + 5045040\binom{n}{14} + 4729725\binom{n}{15} + 2027025\binom{n}{16}. \end{split}$$

Definition (Liu)

- A subring R ⊆ Zⁿ with index equal to a power of p is irreducible if for each (x₁,..., x_n) ∈ R, x₁ ≡ ··· ≡ x_n (mod p).
- Let $g_n(p^e)$ be the number of irreducible subrings of \mathbb{Z}^n of index p^e .

Proposition (Liu)

For n > 0,

$$f_n(p^e) = \sum_{i=0}^e \sum_{j=1}^n {n-1 \choose j-1} f_{n-j}(p^{e-i})g_j(p^i).$$

Idea: Compute $f_n(p^e)$ by computing $f_j(p^k)$ for all $j \le n-1$ and $k \le e$ and $g_j(p^i)$ for all $j \le n$ and $i \le e$.

Proposition (Liu)

There is a bijection between subrings of \mathbb{Z}^n of index k and $n \times n$ subring matrices A in Hermite normal form with det(A) = k such that:

- the identity element $(1, \ldots, 1)^T$ is in the column span of A, and
- If or each i, j ∈ [1, n], v_i ∘ v_j is in the lattice spanned by the column vectors v₁,..., v_n.

An $n \times n$ subring matrix represents an irreducible subring, and is called an irreducible subring matrix, if and only if

- its first n-1 columns contain only entries divisible by p,
- 3 its final column is equal the identity $(1, \ldots, 1)^T$.

Question

How many irreducible subring matrices have a given diagonal?

Kaplan (UCI)

Counting Subrings of \mathbb{Z}^4

An Example

Consider

$$\begin{pmatrix} p^3 & cp & xp & yp & 1 \\ 0 & p^2 & up & vp & 1 \\ 0 & 0 & p & 0 & 1 \\ 0 & 0 & 0 & p & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

where $0 \le c, x, y \le p^2 - 1$, and $0 \le u, v \le p - 1$.

• If $v_2 \circ v_2$ is in the column span,

$$\begin{pmatrix} c^2 p^2 \\ p^4 \end{pmatrix} = p^2 \begin{pmatrix} cp \\ p^2 \end{pmatrix} + \lambda \begin{pmatrix} p^3 \\ 0 \end{pmatrix}$$

for some $\lambda \in \mathbb{Z}$. This implies $p \mid c$, so we let c = pc'.

 The number of irreducible subring matrices of this form is p² times the number of 𝔽_p-points of the variety V in 5-dimensional affine space defined by

$$(x^{2}-x)-(u^{2}-u)c'=(y^{2}-y)-(v^{2}-v)c'=xy-uvc'=0.$$

• V has 7 irreducible components and $\#V(\mathbb{F}_p) = 7p^2 - 6p + 6$.

Question

- What happens when we try to count irreducible subring matrices with more complicated diagonals?
- Fixing the diagonal leads to solving a collection of polynomial equations modulo powers of p. How complicated can the geometry of the underlying varieties become?
- Sor fixed n, e, is $f_n(p^e)$ always a polynomial in p?
- It is known that ζ^R_{Zⁿ,p}(s) is a rational function in p and p^{-s}. How do these rational functions vary with p?

V. Further Questions

Lower Bounds for Subrings and Orders

Every matrix of the form

$$\begin{pmatrix} p^2 & 0 & xp & yp & 1 \\ 0 & p^2 & up & vp & 1 \\ 0 & 0 & p & 0 & 1 \\ 0 & 0 & 0 & p & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

where $0 \le x, y, u, v < p$, is an irreducible subring matrix.

Idea: Find special classes of matrices for which the multiplicative closure conditions are always satisfied.

Proposition (Brakenhoff)

Every additive subgroup G of \mathcal{O}_K that satisfies $\mathbb{Z} + m^2 \mathcal{O}_K \subseteq G \subset \mathbb{Z} + m \mathcal{O}_K$ for some integer m is a subring.

Question

Do 'most' orders satisfy this condition for some m?

Quotients of Random Sublattices

Question

- Let Λ ⊆ Zⁿ be a sublattice with [Zⁿ: Λ] = k. Then Zⁿ/Λ is a finite abelian group of order k and rank at most n. How often is Zⁿ/Λ cyclic?
- What is the following limit?

$$\lim_{X \to \infty} \frac{\#\{\Lambda \subseteq \mathbb{Z}^n \colon [\mathbb{Z}^n \colon \Lambda] \le X \text{ and } \mathbb{Z}^n / \Lambda \text{ is cyclic}\}}{\#\{\Lambda \subseteq \mathbb{Z}^n \colon [\mathbb{Z}^n \colon \Lambda] \le X\}}$$

Theorem (Nguyen-Shparlinski)

The probability that \mathbb{Z}^n/Λ is cyclic is

$$\frac{\prod_{p}\left(1+\frac{p^{n-1}-1}{p^{n+1}-p^{n}}\right)}{\zeta(n)\zeta(n-1)\cdots\zeta(2)}.$$

• Chinta-K.-Koplewitz: 'Probability that \mathbb{Z}^n/Λ has rank m'.

Consider the limit

$$\lim_{X \to \infty} \frac{\#\{R \subseteq \mathbb{Z}^n \text{ is a subring} \colon [\mathbb{Z}^n \colon R] \le X \text{ and } \mathbb{Z}^n/R \text{ is cyclic}\}}{\#\{R \subseteq \mathbb{Z}^n \text{ is a subring} \colon [\mathbb{Z}^n \colon R] \le X\}}$$

• A result of Brakenhoff implies that for *n* large enough, \mathbb{Z}^n/R should not be cyclic 'very often'.

Question

Why is this behavior different?

Question

What does a random subring of \mathbb{Z}^n 'look like'?

Chimni studies the number of subrings of $\mathbb{Z}[x]/(x^n)$ for small *n*.

- It seems that this ring has 'more' subrings than \mathbb{Z}^n does.
- It also seems that $(\mathbb{Z}[x]/(x^n))/R$ is very often cyclic.