Counting Subrings of \mathbb{Z}^{n}

Nathan Kaplan

University of California, Irvine
New York Number Theory Seminar
January 28, 2021

I. Main Questions

Some Definitions

Definition

- A sublattice $\Lambda \subseteq \mathbb{Z}^{n}$ is a finite index subgroup of \mathbb{Z}^{n}.
- Let $v=\left(v_{1}, \ldots, v_{n}\right), w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{Z}^{n}$. Define $v \circ w=\left(v_{1} w_{1}, \ldots, v_{n} w_{n}\right)$.
- A sublattice $\Lambda \subseteq \mathbb{Z}^{n}$ is a multiplicative sublattice if $v, w \in \Lambda$ implies $v \circ w \in \Lambda$.
- A subring $R \subseteq \mathbb{Z}^{n}$ is a multiplicatively closed sublattice that contains $(1,1, \ldots, 1)$.
- Let $a_{k}\left(\mathbb{Z}^{n}\right)$ be the number of sublattices $\Lambda \subseteq \mathbb{Z}^{n}$ with $\left[\mathbb{Z}^{n}: \Lambda\right]=k$.
- Let $f_{n}(k)$ be the number of subrings $R \subseteq \mathbb{Z}^{n}$ with $\left[\mathbb{Z}^{n}: R\right]=k$.
- It is not difficult to show that the number of subrings of \mathbb{Z}^{n+1} of index k equals the number of multiplicative sublattices of \mathbb{Z}^{n} of index k.

Main Questions

Question

(1) Can we give a formula for $a_{k}\left(\mathbb{Z}^{n}\right)$?
(c) Let

$$
N_{n}(X)=\#\left\{\text { sublattices of } \mathbb{Z}^{n} \text { of index } \leq X\right\}=\sum_{k \leq X} a_{k}\left(\mathbb{Z}^{n}\right)
$$

Can we give an asymptotic formula for $N_{n}(X)$ as $X \rightarrow \infty$?

Question

(1) Can we give a formula for $f_{n}(k)$?
(3) Let

$$
N_{n}^{R}(X)=\#\left\{\text { subrings of } \mathbb{Z}^{n} \text { of index } \leq X\right\}=\sum_{k \leq X} f_{n}(k) .
$$

Can we give an asymptotic formula for $N_{n}^{R}(X)$ as $X \rightarrow \infty$?

Counting Sublattices

- Every finite index subgroup of \mathbb{Z} is $k \mathbb{Z}$ for some positive integer k.
- $a_{k}(\mathbb{Z})=1$ for each $k \geq 1$.
- $N_{1}(X)=\lfloor X\rfloor$.

Theorem

For $n \geq 2$,

$$
\begin{aligned}
N_{n}(X) & =\#\left\{\text { sublattices of } \mathbb{Z}^{n} \text { of index } \leq X\right\} \\
& =\frac{\zeta(n) \zeta(n-1) \cdots \zeta(2)}{n} X^{n}+O\left(X^{n-1} \log (X)\right) .
\end{aligned}
$$

Example

$$
N_{2}(X) \sim \frac{\pi^{2}}{12} X^{2}
$$

Counting Subrings

Theorem (Datskovsky-Wright 3, Nakagawa 4, K.-Marcinek-Takloo-Bighash \geq 5)
(1) For $n \in\{2,3,4,5\}$ there exists a $C_{n}>0$ such that

$$
N_{n}^{R}(X) \sim C_{n} X(\log X)^{\binom{n}{2}-1} .
$$

(2) Suppose $n \geq 6$. For any $\epsilon>0$ we have

$$
X(\log X)^{\binom{n}{2}-1} \ll N_{n}^{R}(X) \ll_{\epsilon} X^{\frac{n}{2}-\frac{7}{6}+\epsilon} .
$$

Theorem (Isham)
Fix $n>1$ and let

$$
a(n)=\max _{0 \leq d \leq n-1}\left(\frac{d(n-1-d)}{n-1+d}+\frac{1}{n-1+d}\right) .
$$

Then $X^{a(n)} \ll N_{n}^{R}(X)$.

- As $n \rightarrow \infty, a(n) \approx .17 n$.
- This result builds on work of Brakenhoff.

II. Counting Sublattices

Counting Matrices in Hermite Normal Form

- Every sublattice of \mathbb{Z}^{n} is the column span of a unique matrix in Hermite normal form.
- The index of the sublattice is the determinant of the matrix.

Definition

An $n \times n$ integer matrix A is in Hermite normal form if:
(1) A is upper triangular, and
(2) $0 \leq a_{i j}<a_{i i}$ for $1 \leq i<j \leq n$.

$$
\left(\begin{array}{ccc}
1 & 2 & 0 \\
-3 & 3 & 0 \\
2 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
3 & 2 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Question

(1) How many $n \times n$ matrices in Hermite normal form have determinant k ?
(2) How many $n \times n$ matrices in Hermite normal form have a given diagonal?

The Zeta Function of \mathbb{Z}^{n}

Definition

$$
\zeta_{\mathbb{Z}^{n}}(s)=\sum_{\substack{\Lambda \subseteq \mathbb{Z}^{n} \\\left[\mathbb{Z}^{n}: \Lambda\right]<\infty}}\left[\mathbb{Z}^{n}: \Lambda\right]^{-s}=\sum_{k=1}^{\infty} a_{k}\left(\mathbb{Z}^{n}\right) k^{-s} .
$$

Example

$$
\zeta_{\mathbb{Z}}(s)=\sum_{k=1}^{\infty}[\mathbb{Z}: k \mathbb{Z}]^{-s}=\sum_{k=1}^{\infty} k^{-s}=\zeta(s) .
$$

If $\operatorname{gcd}\left(k_{1}, k_{2}\right)=1$ then $a_{k_{1} k_{2}}\left(\mathbb{Z}^{n}\right)=a_{k_{1}}\left(\mathbb{Z}^{n}\right) a_{k_{2}}\left(\mathbb{Z}^{n}\right)$.
Therefore,

$$
\zeta_{\mathbb{Z}^{n}}(s)=\prod_{p} \zeta_{\mathbb{Z}^{n}, p}(s),
$$

where

$$
\zeta_{\mathbb{Z}^{n}, p}(s)=\sum_{e=0}^{\infty} a_{p^{e}}\left(\mathbb{Z}^{n}\right) p^{-e s} .
$$

Matrices in Hermite Normal Form with a Given Diagonal

Example

$$
\left(\begin{array}{ccc}
p^{a} & x & y \\
0 & p^{b} & z \\
0 & 0 & p^{c}
\end{array}\right)
$$

There are p^{a} choices for x, p^{a} choices for y, and p^{b} choices for z.

$$
\begin{aligned}
\zeta_{\mathbb{Z}^{3}, p}(s) & =\sum_{a=0}^{\infty} \sum_{b=0}^{\infty} \sum_{c=0}^{\infty} p^{2 a+b} \cdot p^{-(a+b+c) s} \\
& =\left(\sum_{a=0}^{\infty} p^{a(2-s)}\right)\left(\sum_{b=0}^{\infty} p^{b(1-s)}\right)\left(\sum_{c=0}^{\infty} p^{-s c}\right) \\
& =\left(1-p^{-(s-2)}\right)^{-1}\left(1-p^{-(s-1)}\right)^{-1}\left(1-p^{-s}\right)^{-1} .
\end{aligned}
$$

The Zeta Function of \mathbb{Z}^{n}

Theorem

$$
\zeta_{\mathbb{Z}^{n}}(s)=\zeta(s) \zeta(s-1) \cdots \zeta(s-(n-1)) .
$$

- Analytic properties of $\zeta_{\mathbb{Z}^{n}}(s)$ give information about $N_{n}(X)$.
- More specifically, $\zeta_{\mathbb{Z}^{n}}(s)$ has meromorphic continuation to the entire complex plane. Its right-most pole is at $s=n$. It is a simple pole.
- Calculating the residue and applying a Tauberian theorem gives

$$
N_{n}(X) \sim \frac{\zeta(n) \zeta(n-1) \cdots \zeta(2)}{n} X^{n} .
$$

Subgroup Growth by Lubotzky and Segal gives 5 different proofs of this result. (This one is attributed to Bushnell and Reiner.)

III. The Subring Zeta Function of \mathbb{Z}^{n}

When does a matrix give a multiplicatively closed sublattice?

Proposition

Let A be an $n \times n$ matrix Hermite normal form with columns v_{1}, \ldots, v_{n}. The column span \wedge of A is a multiplicative sublattice of \mathbb{Z}^{n} if and only if $v_{i} \circ v_{j} \in \Lambda$ for all $1 \leq i \leq j \leq n$.

Consider $A=\left(\begin{array}{cc}x & y \\ 0 & z\end{array}\right)$.

$$
\begin{aligned}
& v_{1} \circ v_{1}=\binom{x^{2}}{0}=x \cdot v_{1}+0 \cdot v_{2} . \\
& v_{1} \circ v_{2}=\binom{x y}{0}=y \cdot v_{1}+0 \cdot v_{2} . \\
& v_{2} \circ v_{2}=\binom{y^{2}}{z^{2}}=\binom{y^{2}-y z}{0}+z \cdot v_{2} .
\end{aligned}
$$

The sublattice spanned by this matrix is multiplicative if and only if $x \mid\left(y^{2}-y z\right)$, or equivalently, if $\frac{y^{2}-y z}{x} \in \mathbb{Z}$.

The Subring Zeta Function of \mathbb{Z}^{n} for Small n

Definition

$$
\zeta_{\mathbb{Z}^{n}}^{R}(s)=\sum_{k=1}^{\infty} f_{n}(k) k^{-s}
$$

As we saw with $\zeta_{\mathbb{Z}^{n}}(s)$, this zeta function has an Euler product

$$
\zeta_{\mathbb{Z}^{n}}^{R}(s)=\prod_{p} \zeta_{\mathbb{Z}^{n}, p}^{R}(s), \text { where } \zeta_{\mathbb{Z}^{n}, p}^{R}(s)=\sum_{e=0}^{\infty} f_{n}\left(p^{e}\right) p^{-e s}
$$

Theorem (Datskovsky-Wright)
We have

$$
\begin{aligned}
\zeta_{\mathbb{Z}^{2}}^{R}(s) & =\zeta(s) \\
\zeta_{\mathbb{Z}^{3}}^{R}(s) & =\frac{\zeta(3 s-1) \zeta(s)^{3}}{\zeta(2 s)^{2}}
\end{aligned}
$$

The Subring Zeta Function of \mathbb{Z}^{n} for Small n

Theorem (Nakagawa)

We have

$$
\begin{aligned}
\zeta_{\mathbb{Z}^{4}}^{R}(s)= & \prod_{p} \frac{1}{\left(1-p^{-s}\right)^{2}\left(1-p^{2} p^{-4 s}\right)\left(1-p^{3} p^{-6 s}\right)}\left(1+4 p^{-s}+2 p^{-2 s}\right. \\
& +(4 p-3) p^{-3 s}+(5 p-1) p^{-4 s}+\left(p^{2}-5 p\right) p^{-5 s} \\
& \left.+\left(3 p^{2}-4 p\right) p^{-6 s}-2 p^{2} p^{-7 s}-4 p^{2} p^{-8 s}-p^{2} p^{-9 s}\right) .
\end{aligned}
$$

Theorem (Datskovsky-Wright, Nakagawa, K.-Marcinek-Takloo-Bighash)
For $n \in\{2,3,4,5\}$ there exists a $C_{n}>0$ such that

$$
N_{n}^{R}(X) \sim C_{n} X(\log X)^{\binom{n}{2}-1}
$$

Idea for $n=5$: Count subrings of 'small index' and show that there are not 'too many' subrings of 'large index'. Show that $\zeta_{\mathbb{Z}^{5}}^{R}(s)$ has a pole at $s=1$ of order $\binom{5}{2}$ and that there are no poles to the right of $s=1$.

Motivation: Counting Orders in Number Fields

Conjecture

Let $A_{n}(X)$ denote the number of isomorphism classes of degree n number fields K such that $|\operatorname{disc}(K)|<X$.
There exists a real number $c_{n}>0$ such that

$$
A_{n}(X) \sim c_{n} X
$$

- $n=3$, Davenport-Heilbronn.
- $n=4,5$, Bhargava.

Idea: Count all orders in degree n fields then sieve for the maximal orders.

Question

Let $B_{K}(X)$ denote the number of isomorphism classes of orders \mathcal{O} contained in K such that $|\operatorname{disc}(\mathcal{O})|<X$.
How does $B_{K}(X)$ grow as a function of X ?

- If $\mathcal{O} \subseteq \mathcal{O}_{K}$ is an order, then $\operatorname{disc}(\mathcal{O})=\left[\mathcal{O}_{K}: \mathcal{O}\right]^{2} \operatorname{disc}\left(\mathcal{O}_{K}\right)$.
- Let K be a degree n number field.
- The subring zeta function $\zeta_{\mathcal{O}_{K}}^{R}(s)$ has an Euler product.
- The local factor $\zeta_{\mathcal{O}_{K}, p}^{R}(s)$ depends on how p decomposes in K.
- If p splits completely in K the local factor at p is $\zeta_{\mathbb{Z}^{n}, p}(s)$.

Idea: Primes that split completely should contribute 'the most' orders.
Question
Does the growth rate of $N_{n}(X)$ determine the growth rate of $B_{K}(X)$?
IV. Counting Subrings of \mathbb{Z}^{n} of 'Small Index'

Counting Subrings of \mathbb{Z}^{n} of Small Index

Proposition (Liu)

For any positive integer n

$$
\begin{aligned}
f_{n}(1)= & 1, \\
f_{n}(p)= & \binom{n}{2}, \\
f_{n}\left(p^{2}\right)= & \binom{n}{2}+\binom{n}{3}+3\binom{n}{4}, \\
f_{n}\left(p^{3}\right)= & \binom{n}{2}+(p+1)\binom{n}{3}+7\binom{n}{4}+10\binom{n}{5}+15\binom{n}{6}, \\
f_{n}\left(p^{4}\right)= & \binom{n}{2}+(3 p+1)\binom{n}{3}+\left(p^{2}+p+10\right)\binom{n}{4}+(10 p+21)\binom{n}{5} \\
& +70\binom{n}{6}+105\binom{n}{7}+105\binom{n}{8} .
\end{aligned}
$$

- Liu also gives a formula for $f_{n}\left(p^{5}\right)$.

Counting Subrings of \mathbb{Z}^{n} of Small Index

Atanasov-K.-Krakoff-Menzel: Give formulas for $f_{n}\left(p^{e}\right)$ for $e \in\{6,7,8\}$.

$$
\begin{aligned}
f_{n}\left(p^{8}\right)= & \binom{n}{2}+\left(4 p^{2}+4 p+1\right)\binom{n}{3}+\left(p^{4}+26 p^{3}+9 p^{2}+p+22\right)\binom{n}{4} \\
& +\left(p^{5}+77 p^{4}-13 p^{3}+52 p^{2}+161 p+61\right)\binom{n}{5} \\
& +\left(16 p^{6}+31 p^{5}+22 p^{4}+187 p^{3}+702 p^{2}+301 p+441\right)\binom{n}{6} \\
& +\left(p^{8}+p^{7}+2 p^{6}+23 p^{5}+339 p^{4}+1080 p^{3}+1206 p^{2}+3074 p+1800\right)\binom{n}{7} \\
& +\left(29 p^{6}+29 p^{5}+652 p^{4}+1093 p^{3}+9374 p^{2}+9073 p+8933\right)\binom{n}{8} \\
& +\left(36 p^{5}+498 p^{4}+6420 p^{3}+15324 p^{2}+39810 p+37201\right)\binom{n}{9} \\
& +\left(630 p^{4}+3150 p^{3}+46200 p^{2}+103320 p+148551\right)\binom{n}{10} \\
& +\left(6930 p^{3}+41580 p^{2}+243705 p+510730\right)\binom{n}{11} \\
& +\left(51975 p^{2}+329175 p+1474165\right)\binom{n}{12} \\
& +(270270 p+3258255)\binom{n}{13}+5045040\binom{n}{14}+4729725\binom{n}{15}+2027025\binom{n}{16} .
\end{aligned}
$$

Irreducible Subrings

Definition (Liu)

- A subring $R \subseteq \mathbb{Z}^{n}$ with index equal to a power of p is irreducible if for each $\left(x_{1}, \ldots, x_{n}\right) \in R, x_{1} \equiv \cdots \equiv x_{n}(\bmod p)$.
- Let $g_{n}\left(p^{e}\right)$ be the number of irreducible subrings of \mathbb{Z}^{n} of index p^{e}.

Proposition (Liu)

For $n>0$,

$$
f_{n}\left(p^{e}\right)=\sum_{i=0}^{e} \sum_{j=1}^{n}\binom{n-1}{j-1} f_{n-j}\left(p^{e-i}\right) g_{j}\left(p^{i}\right)
$$

Idea: Compute $f_{n}\left(p^{e}\right)$ by computing $f_{j}\left(p^{k}\right)$ for all $j \leq n-1$ and $k \leq e$ and $g_{j}\left(p^{i}\right)$ for all $j \leq n$ and $i \leq e$.

Irreducible Subring Matrices

Proposition (Liu)

There is a bijection between subrings of \mathbb{Z}^{n} of index k and $n \times n$ subring matrices A in Hermite normal form with $\operatorname{det}(A)=k$ such that:
(1) the identity element $(1, \ldots, 1)^{T}$ is in the column span of A, and
(2) for each $i, j \in[1, n], v_{i} \circ v_{j}$ is in the lattice spanned by the column vectors v_{1}, \ldots, v_{n}.

An $n \times n$ subring matrix represents an irreducible subring, and is called an irreducible subring matrix, if and only if
(1) its first $n-1$ columns contain only entries divisible by p,
(2) its final column is equal the identity $(1, \ldots, 1)^{T}$.

Question

How many irreducible subring matrices have a given diagonal?

An Example

Consider

$$
\left(\begin{array}{ccccc}
p^{3} & c p & x p & y p & 1 \\
0 & p^{2} & u p & v p & 1 \\
0 & 0 & p & 0 & 1 \\
0 & 0 & 0 & p & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

where $0 \leq c, x, y \leq p^{2}-1$, and $0 \leq u, v \leq p-1$.

- If $v_{2} \circ v_{2}$ is in the column span,

$$
\binom{c^{2} p^{2}}{p^{4}}=p^{2}\binom{c p}{p^{2}}+\lambda\binom{p^{3}}{0}
$$

for some $\lambda \in \mathbb{Z}$. This implies $p \mid c$, so we let $c=p c^{\prime}$.

- The number of irreducible subring matrices of this form is p^{2} times the number of \mathbb{F}_{p}-points of the variety V in 5-dimensional affine space defined by

$$
\left(x^{2}-x\right)-\left(u^{2}-u\right) c^{\prime}=\left(y^{2}-y\right)-\left(v^{2}-v\right) c^{\prime}=x y-u v c^{\prime}=0 .
$$

- V has 7 irreducible components and $\# V\left(\mathbb{F}_{p}\right)=7 p^{2}-6 p+6$.

Question

Question

(1) What happens when we try to count irreducible subring matrices with more complicated diagonals?
(2) Fixing the diagonal leads to solving a collection of polynomial equations modulo powers of p.
How complicated can the geometry of the underlying varieties become?

- For fixed n, e, is $f_{n}\left(p^{e}\right)$ always a polynomial in p ?
- It is known that $\zeta_{\mathbb{Z}^{n}, p}^{R}(s)$ is a rational function in p and p^{-s}. How do these rational functions vary with p ?

V. Further Questions

Lower Bounds for Subrings and Orders

Every matrix of the form

$$
\left(\begin{array}{ccccc}
p^{2} & 0 & x p & y p & 1 \\
0 & p^{2} & u p & v p & 1 \\
0 & 0 & p & 0 & 1 \\
0 & 0 & 0 & p & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

where $0 \leq x, y, u, v<p$, is an irreducible subring matrix.
Idea: Find special classes of matrices for which the multiplicative closure conditions are always satisfied.

Proposition (Brakenhoff)

Every additive subgroup G of \mathcal{O}_{K} that satisfies
$\mathbb{Z}+m^{2} \mathcal{O}_{K} \subseteq G \subset \mathbb{Z}+m \mathcal{O}_{K}$ for some integer m is a subring.

Question

Do 'most' orders satisfy this condition for some m ?

Quotients of Random Sublattices

Question

(1) Let $\Lambda \subseteq \mathbb{Z}^{n}$ be a sublattice with $\left[\mathbb{Z}^{n}: \Lambda\right]=k$.

Then \mathbb{Z}^{n} / Λ is a finite abelian group of order k and rank at most n.
How often is \mathbb{Z}^{n} / Λ cyclic?
(0) What is the following limit?

$$
\lim _{x \rightarrow \infty} \frac{\#\left\{\Lambda \subseteq \mathbb{Z}^{n}:\left[\mathbb{Z}^{n}: \Lambda\right] \leq X \text { and } \mathbb{Z}^{n} / \Lambda \text { is cyclic }\right\}}{\#\left\{\Lambda \subseteq \mathbb{Z}^{n}:\left[\mathbb{Z}^{n}: \Lambda\right] \leq X\right\}}
$$

Theorem (Nguyen-Shparlinski)

The probability that \mathbb{Z}^{n} / Λ is cyclic is

$$
\frac{\prod_{p}\left(1+\frac{p^{n-1}-1}{p^{n+1}-p^{n}}\right)}{\zeta(n) \zeta(n-1) \cdots \zeta(2)}
$$

- Chinta-K.-Koplewitz: 'Probability that \mathbb{Z}^{n} / Λ has rank m '.

Quotients of Random Subrings

Consider the limit

$$
\lim _{X \rightarrow \infty} \frac{\#\left\{R \subseteq \mathbb{Z}^{n} \text { is a subring: }\left[\mathbb{Z}^{n}: R\right] \leq X \text { and } \mathbb{Z}^{n} / R \text { is cyclic }\right\}}{\#\left\{R \subseteq \mathbb{Z}^{n} \text { is a subring: }\left[\mathbb{Z}^{n}: R\right] \leq X\right\}}
$$

- A result of Brakenhoff implies that for n large enough, \mathbb{Z}^{n} / R should not be cyclic 'very often'.

Question

Why is this behavior different?

Question

What does a random subring of \mathbb{Z}^{n} 'look like'?

Subrings of $\mathbb{Z}[x] /\left(x^{n}\right)$

Chimni studies the number of subrings of $\mathbb{Z}[x] /\left(x^{n}\right)$ for small n.

- It seems that this ring has 'more' subrings than \mathbb{Z}^{n} does.
- It also seems that $\left(\mathbb{Z}[x] /\left(x^{n}\right)\right) / R$ is very often cyclic.

