Math 206A: Algebra
 Final Exam Solutions

Thursday, December 17, 2020.

Solutions

1. (a) Define a field.

Solution: A field is a commutative ring with identity $1 \neq 0$ where every nonzero element is a unit.
(b) Define an integral domain.

Solution: An integral domain is a commutative ring with identity $1 \neq 0$ that has no zero divisors.
(c) Prove that a finite integral domain is a field.

Solution: Let R be a finite integral domain and let $x \in R$ be a nonzero element. We will show that x is a unit. This will show that every nonzero element of R is a unit. We conclude that R is a field.
Consider the map $\varphi: R \rightarrow R$ defined by $\varphi(a)=a \cdot x$. We show that it is injective. An injective map between finite sets of the same size is automatically surjective. Once we know φ is surjective, there exists $y \in R$ such that $\varphi(y)=y x=1$. Since R is commutative $x y=1$ also. So x is a unit.
We now need only prove that φ is injective. Suppose that $\varphi(a)=\varphi(b)$. This implies $a x=b x$. This means $a x-b x=(a-b) x=0$. Since R is an integral domain, $a-b$ and x are not zero divisors. Therefore, $a-b=0$ or $x=0$. Since we assumed $x \neq 0$, we know that $a-b=0$, so $a=b$. Therefore, φ is injective.
2. Decide which of the following are subrings of \mathbb{Q}. Give a brief justification for your answer.
(a) The set of nonnegative rational numbers.

Solution: This is not a subring of \mathbb{Q} because it is not an additive subgroup of \mathbb{Q}. For example 1 does not have an additive inverse.
(b) The set of all rational numbers with odd numerators (when written in lowest terms)

Solution: This is not a subring of \mathbb{Q} because it is not an additive subgroup of \mathbb{Q}. For example 1 is in this set, but $1+1=2$ is not in this set.
(c) The set of all rational numbers with even numerators (when written in lowest terms)

Solution: This is a subring of \mathbb{Q}. We first check that it is an additive subgroup of \mathbb{Q}. The set consists of all rational numbers $\frac{2 a}{b}$ where a is any nonzero integer, b is a nonzero
odd positive integer and $\operatorname{gcd}(a, b)=1$, and also 0 . We see that

$$
\frac{2 a_{1}}{b_{1}}-\frac{2 a_{2}}{b_{2}}=\frac{2 a_{1} b_{2}-2 a_{2} b_{1}}{b_{1} b_{2}} .
$$

This fraction may not be in lowest terms, but since $b_{1} b_{2}$ is odd, when we write it in lowest terms, the denominator is odd. By the subgroup criterion, this set is an additive subgroup of \mathbb{Q}.
We now show that this set is closed under multiplication. We have

$$
\frac{2 a_{1}}{b_{1}} \cdot \frac{2 a_{2}}{b_{2}}=\frac{4 a_{1} a_{2}}{b_{1} b_{2}} .
$$

This fraction may not be in lowest terms, but since $b_{1} b_{2}$ is odd, when we write it in lowest terms, the denominator is odd.

Note: For this question we are using Dummit and Foote's definition of a subring. That is, a subring does not necessarily have to contain an identity.
3. Decide which of the following are ideals of $\mathbb{Z}[x]$:
(a) The set of all polynomials whose coefficient of x^{2} is a multiple of 3 .

Solution: This is not an ideal because it is not closed under left multiplication by elements of $\mathbb{Z}[x]$. For example, $1+0 x^{2}$ is in this set, but $x^{2}=x^{2}\left(1+0 x^{2}\right)$ is not.
(b) The set of all polynomials whose constant term, coefficient of x, and coefficient of x^{2} are zero.
Solution: This is an ideal of $\mathbb{Z}[x]$. The set described here is the set of all polynomials divisible by x^{3}. This is the ideal generated by x^{3}.
(c) The set of all polynomials whose coefficients sum to zero.

Solution: This is an ideal of $\mathbb{Z}[x]$. The set described here is the set of $p(x) \in \mathbb{Z}[x]$ such that $p(1)=0$, since $p(1)$ is the sum of the coefficients of $p(x)$. This is the set of all polynomials divisible by $x-1$, which is the ideal generated by $x-1$.
4. Find all ring homomorphisms from \mathbb{Z} to $\mathbb{Z} / 30 \mathbb{Z}$. Explain how you know your list is complete.

Note: For this question we are using Dummit and Foote's definition of a ring homomorphism. That is, a ring homomorphism $\varphi: R \rightarrow S$ between rings with identities does not necessarily have to take the identity of R to the identity of S.
Solution: A group homomorphism from a cyclic group G to another group is determined by where it sends a generator of G. Therefore, we need only consider $\varphi: \mathbb{Z} \rightarrow \mathbb{Z} / 30 \mathbb{Z}$ defined by $\varphi(1)=x$. We check which of these group homomorphisms have the property that $\varphi(a \cdot b)=$ $\varphi(a) \cdot \varphi(b)$, and are therefore ring homomorphisms.

We first note that

$$
x=\varphi(1)=\varphi(1 \cdot 1)=\varphi(1) \cdot \varphi(1)=x^{2} .
$$

So we need only consider x for which $x^{2}=x$ in $\mathbb{Z} / 30 \mathbb{Z}$, or equivalently $x^{2}-x=x(x-1) \equiv 0$ $(\bmod 30)$.
It is not difficult to see that this holds if and only if each of 2,3 and 5 divide either x or $x-1$. That is, x is either: a multiple of 5 or one more than a multiple of 5 , a multiple of 3 or one more than a multiple of 3 , and a multiple of 2 or one more than a multiple of 2 . This last condition is always satisfied and the first two are easy to check.
We see that the only possibilities are $x \in\{0,1,6,10,15,16,21,25\}$.
We claim that each of these values of x determines a ring homomorphism. We have

$$
\varphi(a)=\varphi(1+\cdots+1)=a \cdot \varphi(1)=a x .
$$

Similarly,

$$
\varphi(b)=\varphi(1+\cdots+1)=b \cdot \varphi(1)=b x
$$

and

$$
\varphi(a b)=\varphi(1+\cdots+1)=a b \cdot \varphi(1)=a b x .
$$

Now,

$$
\varphi(a) \cdot \varphi(b)=(a x)(b x)=a b x^{2}=a b x=\varphi(a b) .
$$

5. (a) State the Orbit-Stabilizer Theorem.

Solution: $\left|\operatorname{Orb}_{x}\right|=\left[G: \operatorname{Stab}_{x}\right]$.
(b) Let G be a finite p-group acting on a finite set X. Prove that

$$
|X| \equiv \#\{\text { Fixed points of this action }\} \quad(\bmod p)
$$

Solution: Let x_{1}, \ldots, x_{r} be representatives of the orbits of this action of size larger than 1. Since the orbits of a group action partition X, we have

$$
|X|=\#\{\text { Fixed points of this action }\}+\sum_{i=1}^{r}\left|\operatorname{Orb}_{x_{i}}\right| .
$$

By the Orbit-Stabilizer Theorem, we have $\left|\operatorname{Orb}_{x_{i}}\right|=\left[G\right.$: $\left.\operatorname{Stab}_{x_{i}}\right]$ for each i. Since $\left|\operatorname{Orb}_{x_{i}}\right|>1$, we know that $\left[G: \operatorname{Stab}_{x_{i}}\right]>1$ for each i. The index of a proper subgroup of G divides $|G|$, so we see that for each $i,\left[G: \operatorname{Stab}_{x_{i}}\right] \equiv 0(\bmod p)$. Therefore,

$$
\begin{aligned}
|X| & =\#\{\text { Fixed points of this action }\}+\sum_{i=1}^{r}\left|\operatorname{Orb}_{x_{i}}\right| \\
& \equiv \#\{\text { Fixed points of this action }\}+\sum_{i=1}^{r}\left|\operatorname{Orb}_{x_{i}}\right| \quad(\bmod p) \\
& \equiv \#\{\text { Fixed points of this action }\} \quad(\bmod p) .
\end{aligned}
$$

6. Does there exist a group G where $G \times G$ contains an element of order 15 , but G does not contain an element of order 15 ?
Either give an example of such a G or prove that such an example does not exist.
Solution: Yes. Take $G=S_{5}$. The element $((1,2,3),(1,2,3,4,5))$ has order $15=\operatorname{lcm}(3,5)$ in $S_{5} \times S_{5}$. But, S_{5} has no element of order 15. The order of an element in S_{n} is the least common multiple of its cycle lengths when written as a product of disjoint cycles. So the only elements of order divisible by 5 in S_{5} are the 5 -cycles, which all have order 5 .
7. Let $p<q$ be odd primes. Let G be a group of order $2 p q$.
(a) Prove that G is not simple.

Solution: We use the fact that for a prime r dividing $|G|$ a Sylow r-subgroup of G is normal if and only if $n_{r}=1$.
By Sylow III, we have $n_{q} \equiv 1(\bmod q)$ and $n_{q} \mid 2 p$. Since $q>2$ and $q>p$, if G is simple we must have $n_{q}=2 p$. This means that G contains $2 p(q-1)$ elements of order q. We also have $n_{p} \equiv 1(\bmod p)$ and $n_{p} \mid 2 q$. If G is simple, $n_{p} \neq 1$ and therefore $n_{p} \geq q$. So n_{p} has at least $q(p-1)$ elements of order p. But then, G contains at least $2 p(q-1)+q(p-1)>2 p q$ elements (note that $q \geq 5$), which is a contradiction.
(b) Define what it means for a group to be solvable.

Solution: A group G is solvable if there exist a chain of subgroups

$$
1=G_{0} \unlhd G_{1} \unlhd \cdots \unlhd G_{r}=G
$$

where each G_{i} is a normal subgroup of G_{i+1} and each quotient G_{i+1} / G_{i} is abelian.
(c) Prove that G is solvable.

Solution: Let P be a Sylow p-subgroup of G and let Q be a Sylow q-subgroup of G. In the first part we proved that either $P \unlhd G$ or $Q \unlhd G$. Either way, $P Q$ is a subgroup of G of order $p q$. Since this subgroup has index 2 , it is normal in G. Now, $G / P Q \cong \mathbb{Z} / 2 \mathbb{Z}$ is abelian.
Let H be either P or Q, whichever one is normal in G. Since H is normal in G it is also normal in $P Q$. Since $P Q / H$ has prime order, it is cyclic, and therefore abelian.
We see that

$$
1 \unlhd H \unlhd P Q \unlhd G,
$$

is a sequence of subgroups showing that G is solvable.
8. (a) Describe the conjugacy classes of S_{4}.
(b) How many elements are in each conjugacy class?

Solution: The conjugacy classes of S_{n} correspond to cycle types. Therefore, in S_{4} we have conjugacy classes consisting of all elements of cycle type: (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1). There are

$$
\begin{aligned}
\binom{4}{4} \cdot(4-1)! & =6
\end{aligned} \text { permutations of cycle type (4), } \quad \begin{array}{rll}
\binom{4}{1} \cdot(3-1)! & =8 & \text { permutations of cycle type }(3,1) \\
\binom{4}{2} / 2 & =3 & \text { permutations of cycle type }(2,2) \\
\binom{4}{2} \cdot 1! & =6 & \text { permutations of cycle type }(2,1,1) \\
1 & =1 & \text { permutation of cycle type }(1,1,1,1)
\end{array}
$$

9. (a) Prove that a subgroup of a cyclic group is cyclic.

Solution: Let $G=\langle x\rangle=\left\{x^{n}: n \in \mathbb{Z}\right\}$ be a cyclic group. The trivial subgroup is cyclic: $\{1\}=\langle 1\rangle$.
Let H be a nontrivial subgroup of G. So H contains $x^{n} \neq 1$ for some $n \in \mathbb{Z}$. Since H is closed under taking inverses, H contains x^{-n} also. Since $x^{n} \neq 1$, we see that $x^{-n} \neq 1$ also. Therefore, H contains an element $x^{m} \neq 1$ for some positive integer m.
Let m be the smallest positive integer for which $x^{m} \in H$. We claim that $H=\left\langle x^{m}\right\rangle$. Suppose that $y \in H$. Then $y=x^{s}$ for some integer s. By the division algorithm, $s=q m+r$ for some $0 \leq r<m$. Since $x^{m} \in H$, we have

$$
x^{s} \cdot\left(x^{m}\right)^{-q}=x^{q m+r} \cdot x^{-q m}=x^{r} \in H
$$

Since we assumed that m was the smallest positive integer for which $x^{m} \in H$, we must have $r=0$. Therefore $x^{s}=\left(x^{m}\right)^{q} \in\left\langle x^{m}\right\rangle$, completing the proof that $H=\left\langle x^{m}\right\rangle$.
(b) Is the automorphism group of a cyclic group necessarily cyclic? Explain your answer. Solution: $\operatorname{No} . \operatorname{Aut}(\mathbb{Z} / n \mathbb{Z}) \cong(\mathbb{Z} / n \mathbb{Z})^{*}$, and $(\mathbb{Z} / 8 \mathbb{Z})^{*} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ is not cyclic.
10. Let G be a group of order 42 .
(a) Prove that G has a subgroup of order 6 .

Solution: By Sylow III, $n_{2} \equiv 1(\bmod 2)$ and $n_{2} \mid 21$. So $n_{2} \in\{1,3,7,21\}$. Next, $n_{3} \equiv 1$ $(\bmod 3)$ and $n_{3} \mid 14$. So $n_{3}=1$ or $n_{3}=7$. Finally, $n_{7} \equiv 1(\bmod 7)$ and $n_{7} \mid 6$, so $n_{7}=1$.
Let P be a Sylow 2-subgroup of G and Q be a Sylow 3 -subgroup of G. If n_{3} or n_{2} is equal to 1 , then $P Q$ is a subgroup of G of order 6 . If $n_{3} \neq 1$, then $n_{3}=7=\left[G: N_{G}(Q)\right]$, so $N_{G}(Q)$ is a subgroup of G of order 6 .
So, in any case G has a subgroup H of order 6 .
(b) Prove that G has a subgroup of order 21.

Solution: Let N be the unique Sylow 7 -subgroup of G. So $N \unlhd G$. Then $Q N$ is a subgroup of G. We know that $|Q N|=\frac{|Q||N|}{|Q| \cap|N|}$. By Lagrange's Theorem, $Q \cap N=1$. So $Q N$ is a subgroup of G of order 21.
(c) Prove that G is isomorphic to a semidirect product of two nontrivial groups.

Solution: The Recognition Theorem for Semidirect Products states that if H, N are two subgroups of G such that $H N=G, H \cap N=1$, and $H \unlhd G$, then $G \cong H \rtimes_{\varphi} N$, where φ is the action of N on H by conjugation.
We can use either of the previous two parts to finish this problem. By Lagrange's Theorem, $H \cap N=1$. So $H N=G$. Since $N \unlhd G$, we see that $G \cong N \rtimes H$. Since $Q N$ is a subgroup of G of index $2, Q N \unlhd G$. By Lagrange's Theorem, $P \cap Q N=1$. So $P(Q N)=G$. We see that $G \cong Q N \rtimes P$.
11. Either prove the following statement or give a counterexample.

For any group G, the map $\varphi: G \rightarrow G$ defined by $\varphi(g)=g^{2}$ is a homomorphism.
Solution: This is false in general for groups that are not abelian. Let $G=S_{3}, x=(1,2), y=$ $(1,3)$. Then $\varphi(x)=\varphi(y)=1$, but

$$
\varphi(x y)=\varphi(1,3,2)=(1,2,3) .
$$

Since $\varphi(x) \varphi(y) \neq \varphi(x y)$, we see that φ is not a homomorphism.

