
Math 206A: Algebra
Final Exam Solutions

Thursday, December 17, 2020.

Solutions

1. (a) Define a field.

Solution: A field is a commutative ring with identity 1 6= 0 where every nonzero element
is a unit.

(b) Define an integral domain.

Solution: An integral domain is a commutative ring with identity 1 6= 0 that has no
zero divisors.

(c) Prove that a finite integral domain is a field.

Solution: Let R be a finite integral domain and let x ∈ R be a nonzero element. We
will show that x is a unit. This will show that every nonzero element of R is a unit. We
conclude that R is a field.

Consider the map ϕ : R → R defined by ϕ(a) = a · x. We show that it is injective. An
injective map between finite sets of the same size is automatically surjective. Once we
know ϕ is surjective, there exists y ∈ R such that ϕ(y) = yx = 1. Since R is commutative
xy = 1 also. So x is a unit.

We now need only prove that ϕ is injective. Suppose that ϕ(a) = ϕ(b). This implies
ax = bx. This means ax− bx = (a− b)x = 0. Since R is an integral domain, a− b and x
are not zero divisors. Therefore, a− b = 0 or x = 0. Since we assumed x 6= 0, we know
that a− b = 0, so a = b. Therefore, ϕ is injective.

2. Decide which of the following are subrings of Q. Give a brief justification for your answer.

(a) The set of nonnegative rational numbers.

Solution: This is not a subring of Q because it is not an additive subgroup of Q. For
example 1 does not have an additive inverse.

(b) The set of all rational numbers with odd numerators (when written in lowest terms)

Solution: This is not a subring of Q because it is not an additive subgroup of Q. For
example 1 is in this set, but 1 + 1 = 2 is not in this set.

(c) The set of all rational numbers with even numerators (when written in lowest terms)

Solution: This is a subring of Q. We first check that it is an additive subgroup of Q.
The set consists of all rational numbers 2a

b where a is any nonzero integer, b is a nonzero
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odd positive integer and gcd(a, b) = 1, and also 0. We see that

2a1
b1
− 2a2

b2
=

2a1b2 − 2a2b1
b1b2

.

This fraction may not be in lowest terms, but since b1b2 is odd, when we write it in
lowest terms, the denominator is odd. By the subgroup criterion, this set is an additive
subgroup of Q.

We now show that this set is closed under multiplication. We have

2a1
b1
· 2a2
b2

=
4a1a2
b1b2

.

This fraction may not be in lowest terms, but since b1b2 is odd, when we write it in
lowest terms, the denominator is odd.

Note: For this question we are using Dummit and Foote’s definition of a subring. That is, a
subring does not necessarily have to contain an identity.

3. Decide which of the following are ideals of Z[x]:

(a) The set of all polynomials whose coefficient of x2 is a multiple of 3.

Solution: This is not an ideal because it is not closed under left multiplication by
elements of Z[x]. For example, 1 + 0x2 is in this set, but x2 = x2(1 + 0x2) is not.

(b) The set of all polynomials whose constant term, coefficient of x, and coefficient of x2 are
zero.

Solution: This is an ideal of Z[x]. The set described here is the set of all polynomials
divisible by x3. This is the ideal generated by x3.

(c) The set of all polynomials whose coefficients sum to zero.

Solution: This is an ideal of Z[x]. The set described here is the set of p(x) ∈ Z[x] such
that p(1) = 0, since p(1) is the sum of the coefficients of p(x). This is the set of all
polynomials divisible by x− 1, which is the ideal generated by x− 1.

4. Find all ring homomorphisms from Z to Z/30Z. Explain how you know your list is complete.

Note: For this question we are using Dummit and Foote’s definition of a ring homomorphism.
That is, a ring homomorphism ϕ : R → S between rings with identities does not necessarily
have to take the identity of R to the identity of S.

Solution: A group homomorphism from a cyclic group G to another group is determined by
where it sends a generator of G. Therefore, we need only consider ϕ : Z→ Z/30Z defined by
ϕ(1) = x. We check which of these group homomorphisms have the property that ϕ(a · b) =
ϕ(a) · ϕ(b), and are therefore ring homomorphisms.
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We first note that
x = ϕ(1) = ϕ(1 · 1) = ϕ(1) · ϕ(1) = x2.

So we need only consider x for which x2 = x in Z/30Z, or equivalently x2− x = x(x− 1) ≡ 0
(mod 30).

It is not difficult to see that this holds if and only if each of 2, 3 and 5 divide either x or x−1.
That is, x is either: a multiple of 5 or one more than a multiple of 5, a multiple of 3 or one
more than a multiple of 3, and a multiple of 2 or one more than a multiple of 2. This last
condition is always satisfied and the first two are easy to check.

We see that the only possibilities are x ∈ {0, 1, 6, 10, 15, 16, 21, 25}.
We claim that each of these values of x determines a ring homomorphism. We have

ϕ(a) = ϕ(1 + · · ·+ 1) = a · ϕ(1) = ax.

Similarly,
ϕ(b) = ϕ(1 + · · ·+ 1) = b · ϕ(1) = bx,

and
ϕ(ab) = ϕ(1 + · · ·+ 1) = ab · ϕ(1) = abx.

Now,
ϕ(a) · ϕ(b) = (ax)(bx) = abx2 = abx = ϕ(ab).

5. (a) State the Orbit-Stabilizer Theorem.

Solution: |Orbx | = [G : Stabx].

(b) Let G be a finite p-group acting on a finite set X. Prove that

|X| ≡ #{Fixed points of this action} (mod p).

Solution: Let x1, . . . , xr be representatives of the orbits of this action of size larger than
1. Since the orbits of a group action partition X, we have

|X| = #{Fixed points of this action}+

r∑
i=1

|Orbxi |.

By the Orbit-Stabilizer Theorem, we have |Orbxi | = [G : Stabxi ] for each i. Since
|Orbxi | > 1, we know that [G : Stabxi ] > 1 for each i. The index of a proper subgroup
of G divides |G|, so we see that for each i, [G : Stabxi ] ≡ 0 (mod p). Therefore,

|X| = #{Fixed points of this action}+

r∑
i=1

|Orbxi |

≡ #{Fixed points of this action}+

r∑
i=1

|Orbxi | (mod p)

≡ #{Fixed points of this action} (mod p).
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6. Does there exist a group G where G × G contains an element of order 15, but G does not
contain an element of order 15?
Either give an example of such a G or prove that such an example does not exist.

Solution: Yes. Take G = S5. The element ((1, 2, 3), (1, 2, 3, 4, 5)) has order 15 = lcm(3, 5)
in S5 × S5. But, S5 has no element of order 15. The order of an element in Sn is the least
common multiple of its cycle lengths when written as a product of disjoint cycles. So the only
elements of order divisible by 5 in S5 are the 5-cycles, which all have order 5.

7. Let p < q be odd primes. Let G be a group of order 2pq.

(a) Prove that G is not simple.

Solution: We use the fact that for a prime r dividing |G| a Sylow r-subgroup of G is
normal if and only if nr = 1.

By Sylow III, we have nq ≡ 1 (mod q) and nq | 2p. Since q > 2 and q > p, if G is
simple we must have nq = 2p. This means that G contains 2p(q − 1) elements of order
q. We also have np ≡ 1 (mod p) and np | 2q. If G is simple, np 6= 1 and therefore
np ≥ q. So np has at least q(p − 1) elements of order p. But then, G contains at least
2p(q − 1) + q(p− 1) > 2pq elements (note that q ≥ 5), which is a contradiction.

(b) Define what it means for a group to be solvable.

Solution: A group G is solvable if there exist a chain of subgroups

1 = G0 E G1 E · · · E Gr = G,

where each Gi is a normal subgroup of Gi+1 and each quotient Gi+1/Gi is abelian.

(c) Prove that G is solvable.

Solution: Let P be a Sylow p-subgroup of G and let Q be a Sylow q-subgroup of G. In
the first part we proved that either P E G or Q E G. Either way, PQ is a subgroup of
G of order pq. Since this subgroup has index 2, it is normal in G. Now, G/PQ ∼= Z/2Z
is abelian.

Let H be either P or Q, whichever one is normal in G. Since H is normal in G it is also
normal in PQ. Since PQ/H has prime order, it is cyclic, and therefore abelian.

We see that
1 E H E PQ E G,

is a sequence of subgroups showing that G is solvable.

8. (a) Describe the conjugacy classes of S4.

(b) How many elements are in each conjugacy class?
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Solution: The conjugacy classes of Sn correspond to cycle types. Therefore, in S4 we have
conjugacy classes consisting of all elements of cycle type: (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).
There are (

4

4

)
· (4− 1)! = 6 permutations of cycle type (4),(

4

1

)
· (3− 1)! = 8 permutations of cycle type (3, 1),(

4

2

)
/2 = 3 permutations of cycle type (2, 2),(

4

2

)
· 1! = 6 permutations of cycle type (2, 1, 1),

1 = 1 permutation of cycle type (1, 1, 1, 1).

9. (a) Prove that a subgroup of a cyclic group is cyclic.

Solution: Let G = 〈x〉 = {xn : n ∈ Z} be a cyclic group. The trivial subgroup is cyclic:
{1} = 〈1〉.
Let H be a nontrivial subgroup of G. So H contains xn 6= 1 for some n ∈ Z. Since H is
closed under taking inverses, H contains x−n also. Since xn 6= 1, we see that x−n 6= 1
also. Therefore, H contains an element xm 6= 1 for some positive integer m.

Let m be the smallest positive integer for which xm ∈ H. We claim that H = 〈xm〉.
Suppose that y ∈ H. Then y = xs for some integer s. By the division algorithm,
s = qm + r for some 0 ≤ r < m. Since xm ∈ H, we have

xs · (xm)−q = xqm+r · x−qm = xr ∈ H.

Since we assumed that m was the smallest positive integer for which xm ∈ H, we must
have r = 0. Therefore xs = (xm)q ∈ 〈xm〉, completing the proof that H = 〈xm〉.

(b) Is the automorphism group of a cyclic group necessarily cyclic? Explain your answer.

Solution: No. Aut(Z/nZ) ∼= (Z/nZ)∗, and (Z/8Z)∗ ∼= Z/2Z× Z/2Z is not cyclic.

10. Let G be a group of order 42.

(a) Prove that G has a subgroup of order 6.

Solution: By Sylow III, n2 ≡ 1 (mod 2) and n2 | 21. So n2 ∈ {1, 3, 7, 21}. Next, n3 ≡ 1
(mod 3) and n3 | 14. So n3 = 1 or n3 = 7. Finally, n7 ≡ 1 (mod 7) and n7 | 6, so
n7 = 1.

Let P be a Sylow 2-subgroup of G and Q be a Sylow 3-subgroup of G. If n3 or n2 is
equal to 1, then PQ is a subgroup of G of order 6. If n3 6= 1, then n3 = 7 = [G : NG(Q)],
so NG(Q) is a subgroup of G of order 6.

So, in any case G has a subgroup H of order 6.
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(b) Prove that G has a subgroup of order 21.

Solution: Let N be the unique Sylow 7-subgroup of G. So N E G. Then QN is a
subgroup of G. We know that |QN | = |Q||N |

|Q|∩|N | . By Lagrange’s Theorem, Q ∩N = 1. So
QN is a subgroup of G of order 21.

(c) Prove that G is isomorphic to a semidirect product of two nontrivial groups.

Solution: The Recognition Theorem for Semidirect Products states that if H,N are
two subgroups of G such that HN = G, H ∩ N = 1, and H E G, then G ∼= H oϕ N ,
where ϕ is the action of N on H by conjugation.

We can use either of the previous two parts to finish this problem. By Lagrange’s
Theorem, H ∩N = 1. So HN = G. Since N E G, we see that G ∼= N oH. Since QN
is a subgroup of G of index 2, QN E G. By Lagrange’s Theorem, P ∩ QN = 1. So
P (QN) = G. We see that G ∼= QN o P .

11. Either prove the following statement or give a counterexample.
For any group G, the map ϕ : G→ G defined by ϕ(g) = g2 is a homomorphism.

Solution: This is false in general for groups that are not abelian. Let G = S3, x = (1, 2), y =
(1, 3). Then ϕ(x) = ϕ(y) = 1, but

ϕ(xy) = ϕ(1, 3, 2) = (1, 2, 3).

Since ϕ(x)ϕ(y) 6= ϕ(xy), we see that ϕ is not a homomorphism.
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