Math 206A: Algebra Midterm 1 Friday, October 30, 2020.

- You have **90 minutes** for this exam. Pace yourself, and do not spend too much time on any one problem.
- Show your work and justify all of your answers! The more you explain your thought process, the easier it will be to give partial credit for incomplete solutions.
- This is a closed-book exam. No notes or outside resources can be used. Do not use a calculator.
- You may use results that we proved in lecture without proving them here provided you clearly state the result you are using.

(There is an exception: If a question asks you to prove something that we proved in lecture, you should prove it, don't just state it.)

Problems	Problems
1 (5 Points)	6 (5 Points)
2 (3 Points)	7 (5 Points)
3 (5 Points)	8 (10 Points)
4 (10 Points)	9 (10 Points)
5 (10 Points)	10 (12 Points)
Total	Total

Problems

- 1. State the First Isomorphism Theorem.
- What is the order of the automorphism group of Z/8Z?
 No explanation is necessary, you can just write a number.
- 3. For which integers $n \ge 2$ is the group $\{id, (12)\}$ a normal subgroup of S_n ? Prove that your answer is correct.
- 4. (a) Either prove that the following statement is true or give a counterexample showing that it is false: Suppose G is a group. If H is a normal subgroup of G and K is a normal subgroup of H, then K is a normal subgroup of G.
 - (b) Either prove that the following statement is true or give a counterexample showing that it is false: Suppose G is a group and H, K are subgroups of G such that $K \leq H$. If K is a normal subgroup of G, then K is a normal subgroup of H.
- 5. Show that for any $n \ge 3$, A_n contains a subgroup isomorphic to S_{n-2} .
- 6. Let G be a finite group and $g \in G$. Let \mathcal{K} be the conjugacy class of g. Show that $|\mathcal{K}|$ divides |G|.
- 7. Either prove that the following statement is true or give a counterexample showing that it is false: Suppose that G_1 and G_2 are finite groups such that for each positive integer n, G_1 and G_2 have the same number of conjugacy classes of size n. Then G_1 and G_2 are isomorphic.
- 8. Let G be a finite nontrivial p-group. Prove that Z(G) is nontrivial.
- 9. State Sylow's Theorem.
- 10. (a) Let G be a group and $x \in G$ have order k. Prove that $x^n = 1$ if and only if $k \mid n$.
 - (b) Suppose G is a group and $x, y \in G$ satisfy xy = yx. Suppose that the order of x is n and the order of y is m where gcd(n, m) = 1. Prove that the order of xy is nm.