Math 206A: Algebra
 Midterm 1

Friday, October 30, 2020.

- You have 90 minutes for this exam. Pace yourself, and do not spend too much time on any one problem.
- Show your work and justify all of your answers! The more you explain your thought process, the easier it will be to give partial credit for incomplete solutions.
- This is a closed-book exam. No notes or outside resources can be used.

Do not use a calculator.

- You may use results that we proved in lecture without proving them here provided you clearly state the result you are using.
(There is an exception: If a question asks you to prove something that we proved in lecture, you should prove it, don't just state it.)

Problems	
$\mathbf{1}$ (5 Points)	
$\mathbf{2}$ (3 Points)	
$\mathbf{3}$ (5 Points)	
$\mathbf{4}$ (10 Points)	
$\mathbf{5}$ (10 Points)	
Total	

Problems	
$\mathbf{6}$ (5 Points)	
$\mathbf{7}$ (5 Points)	
$\mathbf{8}$ (10 Points)	
$\mathbf{9}$ (10 Points)	
$\mathbf{1 0}$ (12 Points)	
Total	

Problems

1. State the First Isomorphism Theorem.
2. What is the order of the automorphism group of $\mathbb{Z} / 8 \mathbb{Z}$?

No explanation is necessary, you can just write a number.
3. For which integers $n \geq 2$ is the group $\{i d,(12)\}$ a normal subgroup of S_{n} ?

Prove that your answer is correct.
4. (a) Either prove that the following statement is true or give a counterexample showing that it is false: Suppose G is a group. If H is a normal subgroup of G and K is a normal subgroup of H, then K is a normal subgroup of G.
(b) Either prove that the following statement is true or give a counterexample showing that it is false: Suppose G is a group and H, K are subgroups of G such that $K \leq H$. If K is a normal subgroup of G, then K is a normal subgroup of H.
5. Show that for any $n \geq 3, A_{n}$ contains a subgroup isomorphic to S_{n-2}.
6. Let G be a finite group and $g \in G$. Let \mathcal{K} be the conjugacy class of g. Show that $|\mathcal{K}|$ divides $|G|$.
7. Either prove that the following statement is true or give a counterexample showing that it is false: Suppose that G_{1} and G_{2} are finite groups such that for each positive integer n, G_{1} and G_{2} have the same number of conjugacy classes of size n. Then G_{1} and G_{2} are isomorphic.
8. Let G be a finite nontrivial p-group. Prove that $Z(G)$ is nontrivial.
9. State Sylow's Theorem.
10. (a) Let G be a group and $x \in G$ have order k. Prove that $x^{n}=1$ if and only if $k \mid n$.
(b) Suppose G is a group and $x, y \in G$ satisfy $x y=y x$. Suppose that the order of x is n and the order of y is m where $\operatorname{gcd}(n, m)=1$. Prove that the order of $x y$ is $n m$.

