
Math 206A: Algebra
Midterm 1 Solutions
Friday, October 30, 2020.

Problems

1. State the First Isomorphism Theorem.

Solution: Let ϕ : G → H be a homomorphism between groups G and H. Then ker(ϕ) is a
normal subgroup of G and

G/ ker(ϕ) ∼= Im(ϕ).

2. What is the order of the automorphism group of Z/8Z?
No explanation is necessary, you can just write a number.

Solution: We know that Aut(Z/nZ) ∼= (Z/nZ)∗, the group of invertible elements of Z/nZ
under multiplication. We know that |(Z/nZ)∗| = ϕ(n).
Therefore, we see that |Aut(Z/8Z)| = 4.

3. For which integers n ≥ 2 is the group {id, (12)} a normal subgroup of Sn?
Prove that your answer is correct.

Solution: When n = 2 this subgroup is all of S2, so it is normal. For n ≥ 3 we claim that
this subgroup is not normal. A subgroup H is normal in G if and only if gHg−1 = H for all
g ∈ G. Let H = {id, (12)}. We see that (2, 3)−1 = (2, 3) and that

(2, 3)H(2, 3) = {id, (2, 3)(1, 2)(2, 3)} = {id, (1, 3)} 6= H,

so H is not normal in Sn.

4. (a) Either prove that the following statement is true or give a counterexample
showing that it is false: Suppose G is a group. If H is a normal subgroup of G and
K is a normal subgroup of H, then K is a normal subgroup of G.

Solution: This is false. Let G = S4, H = {id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}, and
K = {id, (1, 2)(3, 4)}. We see that H is normal in G because it is a union of two
conjugacy classes (the identity and the set of all permutations of cycle type (2, 2)). We
see that K is normal in H because it has index 2. But, K is not normal in G because
it is not a union of conjugacy classes.

(b) Either prove that the following statement is true or give a counterexample
showing that it is false: Suppose G is a group and H,K are subgroups of G such that
K ≤ H. If K is a normal subgroup of G, then K is a normal subgroup of H.

Solution: This is true. If K is normal in G then gKg−1 = K for all g ∈ G. Since
H ≤ G, then clearly hKh−1 = K for all h ∈ H, and K is normal in H.
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5. Show that for any n ≥ 3, An contains a subgroup isomorphic to Sn−2.

Solution: Consider the function ϕ : Sn−2 → An defined by

ϕ(σ) = σ if σ is even.

ϕ(σ) = σ(n− 1, n− 2) if σ is odd.

Since the product of an odd permutation and a transposition is even, this function really does
take Sn−2 to An. Clearly it is injective– since σ ∈ Sn−2 is a permutation of {1, 2, . . . , n− 2},
it is clear that σ(n− 1, n) 6= id.

We check that ϕ is a homomorphism.

(a) Suppose σ1, σ2 ∈ Sn−2. If both are even, then so is σ1σ2. We have

ϕ(σ1)ϕ(σ2) = σ1σ2 = ϕ(σ1σ2).

(b) If σ1 is odd and σ2 is even, then σ1σ2 is odd and

ϕ(σ1)ϕ(σ2) = (σ1(n− 1, n))σ2 = σ1σ2(n− 1, n) = ϕ(σ1σ2).

(c) If σ1 is even and σ2 is odd, then σ1σ2 is odd and

ϕ(σ1)ϕ(σ2) = σ1(σ2(n− 1, n)) = ϕ(σ1σ2).

(d) If both are odd, then σ1σ2 is even. We have

ϕ(σ1)ϕ(σ2) = (σ1(n− 1, n))(σ2(n− 1, n)) = σ1σ2(n− 1, n)2 = σ1σ2 = ϕ(σ1σ2).

By the First Isomorphism Theorem, Sn−2/ ker(ϕ) = Sn−2 is isomorphic to a subgroup of An.

6. Let G be a finite group and g ∈ G. Let K be the conjugacy class of g.
Show that |K| divides |G|.
Solution: Let G act on itself by conjugation. The orbit of g is K, so by the orbit-stabilizer
theorem we have

|K| = |G|
|Stabg |

.

We have Stabg is equal to the centralizer of g, which is a subgroup of G.

Since |K||CG(g)| = |G|, we see that |K| divides |G|.

7. Either prove that the following statement is true or give a counterexample show-
ing that it is false: Suppose that G1 and G2 are finite groups such that for each positive
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integer n, G1 and G2 have the same number of conjugacy classes of size n. Then G1 and G2

are isomorphic.

Solution: This is false. In an abelian group every conjugacy class has size 1. So, Z/2Z×Z/2Z
and Z/4Z are two non-isomorphic groups that each have four conjugacy classes of size 1 and
no other conjugacy classes.
(You can see that they are not isomorphic by noting that one is cyclic and the other is not.)

8. Let G be a finite nontrivial p-group. Prove that Z(G) is nontrivial.

Solution: Let g1, . . . , gr be representatives of the conjugacy classes of G of size larger than
1. By the class equation,

|G| = |Z(G)|+
r∑
i=1

[G : CG(gi)].

Since gi is in a conjugacy class of size greater than 1, we see that [G : CG(gi)] > 1. Since
[G : CG(gi)] divides |G|, we see that [G : CG(gi)] ≡ 0 (mod p). Also, p divides |G|, so p must
also divide |Z(G)|. Since 1 ∈ Z(G), we see that |Z(G)| ≥ p. Therefore Z(G) is nontrivial.

9. State Sylow’s Theorem.

Solution: Let G be a finite group and let p be a prime dividing |G|. Let |G| = pαm where
p - m. A Sylow p-subgroup of G is a subgroup of order pα. Let Sylp(G) denote the set of
Sylow p-subgroups of G and let np = |Sylp(G)|.

(a) Sylp(G) 6= ∅. That is, np ≥ 1.

(b) All Sylow p-subgroups are conjugate to each other.

(c) np ≡ 1 (mod p) and np | m.

(d) np = [G : NG(P )] where P is some Sylow p-subgroup and NG(P ) is its normalizer.

10. (a) Let G be a group and x ∈ G have order k. Prove that xn = 1 if and only if k | n.

Solution: By the division algorithm, there exist unique integers q, r with 0 ≤ r < k
with n = qk + r. We have

xn = xqk+r = xqn · xr = (xk)q · xr = 1q · xr = xr.

Since the order of x is k we see that xn = 1 if and only if r = 0. This occurs if and only
if k | n.

(b) Suppose G is a group and x, y ∈ G satisfy xy = yx. Suppose that the order of x is n
and the order of y is m where gcd(n,m) = 1. Prove that the order of xy is nm.

Solution: We show that n divides the order of xy and that m divides order of xy.
Because gcd(n,m) = 1, this implies that nm divides the order of xy. Note that because
xy = yx, we see that

(xy)nm = xnmynm = (xn)m(ym)n = 1.
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So nm is some positive integer k for which (xy)k = 1, so since nm divides the order of
xy, we see that nm is the order of xy.

Let k denote the order of xy. Then

(xy)k = xkyk = 1.

We see that
(xy)nk = xnkynk = (xn)kynk = ynk.

By the first part of this problem, m divides nk. Since gcd(n,m) = 1, we must have m
divides k.

We see that
(xy)mk = xmkymk = xmk(ym)k = xmk.

By the first part of this problem, n divides mk. Since gcd(n,m) = 1, we must have m
divides k.

Note: A lot of people tried to argue like this. Let k be the order of xy. Then (xy)k =
xkyk = 1. This is only possible if xk = 1 and yk = 1. So by part (a) we have m | k and
n | k and therefore lcm(m,n) | k. Since gcd(m,n) = 1 we have lcm(m,n) = mn. So
mn ≤ k. Since (xy)mn = 1 we see that k = mn.

The problem with this argument is the assertion that xkyk = 1 implies xk = 1 and
yk = 1. This needs to be justified. Here’s one way: Suppose xkyk = 1 but xk 6= 1 or
yk 6= 1. It is clear that both xk 6= 1 and yk 6= 1. We see that yk is a nontrivial element of
〈x〉 and clearly yk ∈ 〈y〉, so 〈yk〉 is a nontrivial subgroup of 〈x〉∩〈y〉. But, by Lagrange’s
theorem, |〈yk〉| divides m and also divides n. Since gcd(m,n) = 1, we see that |〈yk〉| = 1,
which contradicts the assumptions that yk 6= 1.

Here’s another way to justify this: Suppose xkyk = 1. So xk = y−k. Proposition 5 in
Section 2.3 of Dummit and Foote says that the order of xk is n

gcd(n,k) and that the order

of yk is m
gcd(m,k) . So n

gcd(n,k) = m
gcd(m,k) . Since n

gcd(n,k) | n and m
gcd(m,k) | m, the condition

that gcd(m,n) = 1 implies that n
gcd(n,k) = m

gcd(m,k) = 1. Therefore, n | k and m | k, and

again since gcd(n,m) = 1 we have mn | k. Since (xy)mn = 1 we have k | mn also, so
k = mn.
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