Math 206A: Algebra
Midterm 1 Solutions
Friday, October 30, 2020.

Problems

1. State the First Isomorphism Theorem.

Solution: Let $\varphi: G \rightarrow H$ be a homomorphism between groups G and H. Then $\operatorname{ker}(\varphi)$ is a normal subgroup of G and

$$
G / \operatorname{ker}(\varphi) \cong \operatorname{Im}(\varphi) .
$$

2. What is the order of the automorphism group of $\mathbb{Z} / 8 \mathbb{Z}$?

No explanation is necessary, you can just write a number.
Solution: We know that $\operatorname{Aut}(\mathbb{Z} / n \mathbb{Z}) \cong(\mathbb{Z} / n \mathbb{Z})^{*}$, the group of invertible elements of $\mathbb{Z} / n \mathbb{Z}$ under multiplication. We know that $\left|(\mathbb{Z} / n \mathbb{Z})^{*}\right|=\varphi(n)$.
Therefore, we see that $|\operatorname{Aut}(\mathbb{Z} / 8 \mathbb{Z})|=4$.
3. For which integers $n \geq 2$ is the group $\{i d,(12)\}$ a normal subgroup of S_{n} ?

Prove that your answer is correct.
Solution: When $n=2$ this subgroup is all of S_{2}, so it is normal. For $n \geq 3$ we claim that this subgroup is not normal. A subgroup H is normal in G if and only if $\mathrm{gHg}^{-1}=H$ for all $g \in G$. Let $H=\{\mathrm{id},(12)\}$. We see that $(2,3)^{-1}=(2,3)$ and that

$$
(2,3) H(2,3)=\{\mathrm{id},(2,3)(1,2)(2,3)\}=\{\mathrm{id},(1,3)\} \neq H,
$$

so H is not normal in S_{n}.
4. (a) Either prove that the following statement is true or give a counterexample showing that it is false: Suppose G is a group. If H is a normal subgroup of G and K is a normal subgroup of H, then K is a normal subgroup of G.
Solution: This is false. Let $G=S_{4}, H=\{\operatorname{id},(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\}$, and $K=\{\operatorname{id},(1,2)(3,4)\}$. We see that H is normal in G because it is a union of two conjugacy classes (the identity and the set of all permutations of cycle type (2, 2)). We see that K is normal in H because it has index 2 . But, K is not normal in G because it is not a union of conjugacy classes.
(b) Either prove that the following statement is true or give a counterexample showing that it is false: Suppose G is a group and H, K are subgroups of G such that $K \leq H$. If K is a normal subgroup of G, then K is a normal subgroup of H.
Solution: This is true. If K is normal in G then $g K g^{-1}=K$ for all $g \in G$. Since $H \leq G$, then clearly $h K h^{-1}=K$ for all $h \in H$, and K is normal in H.
5. Show that for any $n \geq 3, A_{n}$ contains a subgroup isomorphic to S_{n-2}.

Solution: Consider the function $\varphi: S_{n-2} \rightarrow A_{n}$ defined by

$$
\begin{array}{ll}
\varphi(\sigma)=\sigma & \text { if } \sigma \text { is even. } \\
\varphi(\sigma)=\sigma(n-1, n-2) & \text { if } \sigma \text { is odd. }
\end{array}
$$

Since the product of an odd permutation and a transposition is even, this function really does take S_{n-2} to A_{n}. Clearly it is injective- since $\sigma \in S_{n-2}$ is a permutation of $\{1,2, \ldots, n-2\}$, it is clear that $\sigma(n-1, n) \neq \mathrm{id}$.
We check that φ is a homomorphism.
(a) Suppose $\sigma_{1}, \sigma_{2} \in S_{n-2}$. If both are even, then so is $\sigma_{1} \sigma_{2}$. We have

$$
\varphi\left(\sigma_{1}\right) \varphi\left(\sigma_{2}\right)=\sigma_{1} \sigma_{2}=\varphi\left(\sigma_{1} \sigma_{2}\right)
$$

(b) If σ_{1} is odd and σ_{2} is even, then $\sigma_{1} \sigma_{2}$ is odd and

$$
\varphi\left(\sigma_{1}\right) \varphi\left(\sigma_{2}\right)=\left(\sigma_{1}(n-1, n)\right) \sigma_{2}=\sigma_{1} \sigma_{2}(n-1, n)=\varphi\left(\sigma_{1} \sigma_{2}\right)
$$

(c) If σ_{1} is even and σ_{2} is odd, then $\sigma_{1} \sigma_{2}$ is odd and

$$
\varphi\left(\sigma_{1}\right) \varphi\left(\sigma_{2}\right)=\sigma_{1}\left(\sigma_{2}(n-1, n)\right)=\varphi\left(\sigma_{1} \sigma_{2}\right)
$$

(d) If both are odd, then $\sigma_{1} \sigma_{2}$ is even. We have

$$
\varphi\left(\sigma_{1}\right) \varphi\left(\sigma_{2}\right)=\left(\sigma_{1}(n-1, n)\right)\left(\sigma_{2}(n-1, n)\right)=\sigma_{1} \sigma_{2}(n-1, n)^{2}=\sigma_{1} \sigma_{2}=\varphi\left(\sigma_{1} \sigma_{2}\right)
$$

By the First Isomorphism Theorem, $S_{n-2} / \operatorname{ker}(\varphi)=S_{n-2}$ is isomorphic to a subgroup of A_{n}.
6. Let G be a finite group and $g \in G$. Let \mathcal{K} be the conjugacy class of g.

Show that $|\mathcal{K}|$ divides $|G|$.
Solution: Let G act on itself by conjugation. The orbit of g is \mathcal{K}, so by the orbit-stabilizer theorem we have

$$
|\mathcal{K}|=\frac{|G|}{\left|\operatorname{Stab}_{g}\right|} .
$$

We have Stab_{g} is equal to the centralizer of g, which is a subgroup of G.
Since $|\mathcal{K}|\left|C_{G}(g)\right|=|G|$, we see that $|\mathcal{K}|$ divides $|G|$.
7. Either prove that the following statement is true or give a counterexample showing that it is false: Suppose that G_{1} and G_{2} are finite groups such that for each positive
integer n, G_{1} and G_{2} have the same number of conjugacy classes of size n. Then G_{1} and G_{2} are isomorphic.
Solution: This is false. In an abelian group every conjugacy class has size 1 . So, $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ and $\mathbb{Z} / 4 \mathbb{Z}$ are two non-isomorphic groups that each have four conjugacy classes of size 1 and no other conjugacy classes.
(You can see that they are not isomorphic by noting that one is cyclic and the other is not.)
8. Let G be a finite nontrivial p-group. Prove that $Z(G)$ is nontrivial.

Solution: Let g_{1}, \ldots, g_{r} be representatives of the conjugacy classes of G of size larger than 1. By the class equation,

$$
|G|=|Z(G)|+\sum_{i=1}^{r}\left[G: C_{G}\left(g_{i}\right)\right] .
$$

Since g_{i} is in a conjugacy class of size greater than 1 , we see that $\left[G: C_{G}\left(g_{i}\right)\right]>1$. Since $\left[G: C_{G}\left(g_{i}\right)\right]$ divides $|G|$, we see that $\left[G: C_{G}\left(g_{i}\right)\right] \equiv 0(\bmod p)$. Also, p divides $|G|$, so p must also divide $|Z(G)|$. Since $1 \in Z(G)$, we see that $|Z(G)| \geq p$. Therefore $Z(G)$ is nontrivial.
9. State Sylow's Theorem.

Solution: Let G be a finite group and let p be a prime dividing $|G|$. Let $|G|=p^{\alpha} m$ where $p \nmid m$. A Sylow p-subgroup of G is a subgroup of order p^{α}. Let $\operatorname{Syl}_{p}(G)$ denote the set of Sylow p-subgroups of G and let $n_{p}=\left|\operatorname{Syl}_{p}(G)\right|$.
(a) $\operatorname{Syl}_{p}(G) \neq \emptyset$. That is, $n_{p} \geq 1$.
(b) All Sylow p-subgroups are conjugate to each other.
(c) $n_{p} \equiv 1(\bmod p)$ and $n_{p} \mid m$.
(d) $n_{p}=\left[G: N_{G}(P)\right]$ where P is some Sylow p-subgroup and $N_{G}(P)$ is its normalizer.
10. (a) Let G be a group and $x \in G$ have order k. Prove that $x^{n}=1$ if and only if $k \mid n$.

Solution: By the division algorithm, there exist unique integers q, r with $0 \leq r<k$ with $n=q k+r$. We have

$$
x^{n}=x^{q k+r}=x^{q n} \cdot x^{r}=\left(x^{k}\right)^{q} \cdot x^{r}=1^{q} \cdot x^{r}=x^{r} .
$$

Since the order of x is k we see that $x^{n}=1$ if and only if $r=0$. This occurs if and only if $k \mid n$.
(b) Suppose G is a group and $x, y \in G$ satisfy $x y=y x$. Suppose that the order of x is n and the order of y is m where $\operatorname{gcd}(n, m)=1$. Prove that the order of $x y$ is $n m$.
Solution: We show that n divides the order of $x y$ and that m divides order of $x y$. Because $\operatorname{gcd}(n, m)=1$, this implies that $n m$ divides the order of $x y$. Note that because $x y=y x$, we see that

$$
(x y)^{n m}=x^{n m} y^{n m}=\left(x^{n}\right)^{m}\left(y^{m}\right)^{n}=1 .
$$

So $n m$ is some positive integer k for which $(x y)^{k}=1$, so since $n m$ divides the order of $x y$, we see that $n m$ is the order of $x y$.
Let k denote the order of $x y$. Then

$$
(x y)^{k}=x^{k} y^{k}=1
$$

We see that

$$
(x y)^{n k}=x^{n k} y^{n k}=\left(x^{n}\right)^{k} y^{n k}=y^{n k} .
$$

By the first part of this problem, m divides $n k$. Since $\operatorname{gcd}(n, m)=1$, we must have m divides k.
We see that

$$
(x y)^{m k}=x^{m k} y^{m k}=x^{m k}\left(y^{m}\right)^{k}=x^{m k}
$$

By the first part of this problem, n divides $m k$. Since $\operatorname{gcd}(n, m)=1$, we must have m divides k.
Note: A lot of people tried to argue like this. Let k be the order of $x y$. Then $(x y)^{k}=$ $x^{k} y^{k}=1$. This is only possible if $x^{k}=1$ and $y^{k}=1$. So by part (a) we have $m \mid k$ and $n \mid k$ and therefore $\operatorname{lcm}(m, n) \mid k$. Since $\operatorname{gcd}(m, n)=1$ we have $\operatorname{lcm}(m, n)=m n$. So $m n \leq k$. Since $(x y)^{m n}=1$ we see that $k=m n$.
The problem with this argument is the assertion that $x^{k} y^{k}=1$ implies $x^{k}=1$ and $y^{k}=1$. This needs to be justified. Here's one way: Suppose $x^{k} y^{k}=1$ but $x^{k} \neq 1$ or $y^{k} \neq 1$. It is clear that both $x^{k} \neq 1$ and $y^{k} \neq 1$. We see that y^{k} is a nontrivial element of $\langle x\rangle$ and clearly $y^{k} \in\langle y\rangle$, so $\left\langle y^{k}\right\rangle$ is a nontrivial subgroup of $\langle x\rangle \cap\langle y\rangle$. But, by Lagrange's theorem, $\left|\left\langle y^{k}\right\rangle\right|$ divides m and also divides n. Since $\operatorname{gcd}(m, n)=1$, we see that $\left|\left\langle y^{k}\right\rangle\right|=1$, which contradicts the assumptions that $y^{k} \neq 1$.
Here's another way to justify this: Suppose $x^{k} y^{k}=1$. So $x^{k}=y^{-k}$. Proposition 5 in Section 2.3 of Dummit and Foote says that the order of x^{k} is $\frac{n}{\operatorname{gcd}(n, k)}$ and that the order of y^{k} is $\frac{m}{\operatorname{gcd}(m, k)}$. So $\frac{n}{\operatorname{gcd}(n, k)}=\frac{m}{\operatorname{gcd}(m, k)}$. Since $\left.\frac{n}{\operatorname{gcd}(n, k)} \right\rvert\, n$ and $\left.\frac{m}{\operatorname{gcd}(m, k)} \right\rvert\, m$, the condition that $\operatorname{gcd}(m, n)=1$ implies that $\frac{n}{\operatorname{gcd}(n, k)}=\frac{m}{\operatorname{gcd}(m, k)}=1$. Therefore, $n \mid k$ and $m \mid k$, and again since $\operatorname{gcd}(n, m)=1$ we have $m n \mid k$. Since $(x y)^{m n}=1$ we have $k \mid m n$ also, so $k=m n$.

