
Math 206A: Algebra
Midterm 2: Solutions

Monday, November 23, 2020.

Solutions

1. Suppose G is an abelian group, and H1, H2 are subgroups.
Either prove the following statement or find a counterexample.

If G/H1
∼= G/H2, then H1

∼= H2.

Solution: This is false. Let G ∼= Z/p2Z×Z/pZ. Let H1
∼= Z/p2×{0} and H2

∼= Z/pZ×Z/pZ.
Just by counting we see that |G/H1| = |G/H2| = p, so G/H1

∼= G/H2 are isomorphic even
though H1 6∼= H2.

2. State whether the following statement is true or false.
Give a 1-2 sentence explanation for your answer.

Every finite subgroup of GLn(Q) is abelian.

Solution: This is false. In lecture we have seen that identifying elements of Sn with permu-
tation matrices gives a subgroup of GLn(R) isomorphic to Sn. In fact, all of these matrices
have entries equal to 1 or 0, so we see that GLn(Q) has a subgroup isomorphic to Sn.

3. (a) Describe all abelian groups of order 64 up to isomorphism.
(That is, give a list of abelian groups of order 64 such that every abelian group of order
32 is isomorphic to one in your list and no two of these groups are isomorphic to each
other.)

Solution: By the fundamental theorem for finite abelian groups, there is a bijection
between isomorphism classes of groups of order 64 = 26 and partitions λ of 6. We see
that every group of order 64 is isomorphic to one in the following list:

Z/26Z, Z/25Z× Z/21Z, Z/24Z× Z/22Z, Z/24Z× Z/2Z× Z/2Z
Z/23Z× Z/23Z, Z/23Z× Z/22Z× Z/2Z, Z/23Z× Z/2Z× Z/2Z× Z/2Z

Z/22Z× Z/22Z× Z/22Z, Z/22Z× Z/22Z× Z/2Z× Z/2Z,
Z/22Z× Z/2Z× Z/2Z× Z/2Z× Z/2Z, Z/2Z× Z/2Z× Z/2Z× Z/2Z× Z/2Z× Z/2Z

(b) Is Z/30Z× Z/48Z isomorphic to Z/24Z× Z/60Z?
Prove your answer is correct.
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Solution: These groups are not isomorphic. We write them in terms of their elementary
divisor decompositions. We do this by looking at the largest powers of p dividing each
of the factors and then rearranging:

Z/30Z× Z/48Z ∼= (Z/24Z× Z/2Z)× (Z/3Z× Z/3Z)× Z/5Z,
Z/24Z× Z/60Z ∼= (Z/23Z× Z/22Z)× (Z/3Z× Z/3Z)× Z/5Z.

Since the 2-parts of these groups are not isomorphic, the groups are not isomorphic.

4. Let H,K be two subgroups of a finite group G such that H ∩K = {1} and |H| · |K| = |G|.
Does it follow that G ∼= H ×K?
Either prove this statement or give a counterexample.

Solution: It is not always true that G ∼= H × K. The Recognition Theorem for Direct
Products also requires that both H and K are normal subgroups in G. For example, take
G = D2n, H = 〈r〉 and K = 〈s〉. We know that

D2n 6∼= 〈r〉 × 〈s〉 ∼= Z/nZ× Z/2Z.

5. Let ϕ : G→ H be a surjective homomorphism between finite groups.
Prove that the image of a Sylow p-subgroup in G is a Sylow p-subgroup in H.

Solution: Let P be a Sylow p-subgroup of G. A big idea here is to show first that ϕ(P ) ≤ H
is a p-group. Here are two ideas for how to do this:

(a) If x ∈ G, then |ϕ(x)| divides |x|, so every element in ϕ(P ) has order equal to a power of
p. Therefore |ϕ(P )| is a power of p. (By Cauchy’s Theorem, if |ϕ(P )| was not a power
of p it would have to have an element of order not equal to a power of p.)

(b) Let N = ker(ϕ). We have

ϕ(P ) = {pN) : p ∈ P} = PN/N.

By the Second Isomorphism Theorem,

PN/N ∼= P/(P ∩N),

that is
ϕ(P ) ∼= P/ ker(ϕ|P ).

(We can also see this by applying the 1st Isomorphism Theorem to the surjective homo-
morphism ϕ|P : P → ϕ(P ).)

Now we do the rest in two different ways:
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(a) Suppose |G| = pa ·m where p - m. Since ϕ is surjective, the 1st Isomorphism Theorem
says that H ∼= G/ ker(ϕ), so |H| divides |G|. In particular, |H| = pb ·m′ where b ≤ a
and p | m′. This means that pa−b is the highest power of p dividing | ker(ϕ)|.
Suppose that |ϕ(P )| = pc < pb. Therefore,

pc = |ϕ(P )| = |P |/| ker(ϕ|P )| = pa/pa−c.

We know that ker(ϕ|P ) = P ∩ ker(ϕ) ≤ ker(ϕ). But we see that pa−c must divide

ker(ϕ|P ), while pa−b is the largest power of p dividing ker(ϕ). This is a contradiction.

(b) Since P is a Sylow p-subgroup of G, [G : P ] is relatively prime to P . Therefore, [G :
PN ] = [G : P ]/[PN : P ] is also relatively prime to p.

We see that
[H : ϕ(P )] = [G/N : PN/N ] = [G : PN ]

is relatively prime to P as well. Since ϕ(P ) is a p-group, we see that it is a Sylow
p-subgroup of H.

6. A subgroup H of a group G is characteristic if for every σ ∈ Aut(G), σ(H) = H.
Prove that every subgroup of a cyclic group is characteristic.

Solution: First suppose G has order n. A cyclic group of order n has a unique subgroup of
order d for each d dividing n. If σ ∈ Aut(G) and H ≤ G, then σ(H) ∼= H. In particular,
|σ(H)| = |H|. Since H is the only subgroup of order |H, we must have σ(H) = H.

Now suppose G is an infinite cyclic group. So G ∼= Z. If H is the trivial subgroup this is
clear. Every other subgroup H of G has index n for some n ≥ 1, and there is exactly one such
subgroup for each n. If σ ∈ Aut(G) and H ≤ G, then σ(H) ∼= H. In particular, [G : σ(H)] =
[G : H]. Since H is the only subgroup of G with index n, we must have σ(H) = H.

7. Let G be a group and let [G,G] denote its commutator subgroup. Suppose that H ≤ G
satisfies [G,G] ≤ H. Prove that H is a normal subgroup of G.

Solution: We know that xyx−1y−1 ∈ H for all x, y ∈ G. Let h ∈ H and g ∈ G. We need to
show that ghg−1 ∈ H. Suppose ghg−1 = x. We know that ghg−1h−1 = xh−1 ∈ H. Therefore,
xh−1 · h = x ∈ H also.

Solution 2: G′ is a normal subgroup of G and G/[G,G] is abelian. Every subgroup of
an abelian group is normal. H/[G,G] is a subgroup of G/[G,G], so H/[G,G] is normal in
G/[G,G]. By the Lattice Isomorphism Theorem (part (5) on page 99), H is normal in G.

8. Suppose that G is a group of order 351 = 33 · 13. Prove that G is not simple.

Solution: By Sylow III,

n3 ≡ 1 (mod 3), and n3 | 13,

n13 ≡ 1 (mod 13), and n13 | 27.
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So n3 ∈ {1, 13} and n13 ∈ {1, 27}.
So if G is simple, then n3 = 13 and n13 = 27. But if n13 = 27 then G contains 27·(13−1) = 324
element of order 13. There are only 27 elements of order not equal to 13. Since a Sylow 3-
subgroup does not contain any elements of order 13, any Sylow 3-subgroup must be a subset
of these 27 elements. Since a Sylow 3-subgroup of G has order 27, these 27 elements must be
a Sylow 3-subgroup, and this Sylow 3-subgroup is unique.

9. Give an example of an infinite group G in which every element of G has finite order.
No explanation is needed– you just need to give the example.

Solution: Consider
∏

Z/2Z, the direct product of copies of Z/2Z, one for each positive
integer i. This is a group. Every non-identity element of this group has order 2 since

(a1, a2, . . .) + (a1, a2, . . .) = (a1 + a1, a2 + a2, . . .) = (0, 0, . . .).

10. (a) Prove that Q8 is not isomorphic to a semidirect product of two groups of order smaller
than 8.

Solution: If Q8
∼= H oϕ K for some groups H,K of order smaller than 8, then Q8

contains a normal subgroup H̃ isomorphic to H and a subgroup K̃ isomorphic to K
such that H̃K̃ = Q8 and H̃ ∩ K̃ = {1}. If H̃K̃ = Q8 and H̃ ∩ K̃ = {1}, then

|H̃| · |K̃| = |H| · |K| = 8.

So if both |H|, |K| < 8, then also |H|, |K| > 1.

Every non-identity subgroup ofQ8 contains the subgroup 〈−1〉. Therefore, 〈−1〉 ∈ H̃∩K̃.
So Q8 6∼= H oϕ K.

(b) Is D8 isomorphic to a semidirect product of two groups of order smaller than 8?
If so, then give groups H,K and a homomorphism ϕ such that D8

∼= H oϕ K.
If not, prove the D8 is not isomorphic to a semidirect product of two groups of order
smaller than 8.

Solution: We have seen that D2n
∼= Z/nZ oϕ Z/2Z, where ϕ : K → Aut(Z/nZ) is

defined by setting ϕx(h) = h−1 where x is the non-identity element of Z/2Z.
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